

Preface

ANGUAGE technologies is an area of computer science,
more specifically, of artificial intelligence, devoted to the

computational analysis of human language, in its written or
spoken form, and the corresponding practical applications in
which computers reasonably deal with language data.

Applications of natural language technologies include
search, translation, or summarization of texts; automatically
obtaining answers to questions basing on the information
present in huge collections of documents or in Internet,
detecting trends and prevailing opinions or sentiments of
people expressed in social networks with respect to a
company’s products or a government’s actions, interfaces
between the users and computers using normal language,
detection of plagiarism, especially important in educational or
academic settings, as well as numerous other applications.

Such applications save people time on reading or looking
for information, improve quality of life of the users by, say,
recommending them appropriate products or making it easy
for people to use computers or other devices, increase the
income for businesses by helping them better understand the
consumers’ needs, and improve democracy by timely
informing decision makers, political parties and government
of the citizens’ opinions.

Many of these applications are based on a varying degree of
understanding of the contents of the corresponding texts.
Computational semantics is a branch of natural language
processing that studies the techniques for extraction of
meaning from natural language texts or building
computational structures that reflect elements of the meaning
of the text important for its computational treatment in
practical applications.

This issue of Polibits features a special section on
computational semantics and language technologies, which
consists of the following six papers.

Arda Çelebi and Arzucan Özgür from Turkey introduce a
novel concept on n-gram parsing and show that it improves
the performance of a classical constituency parser. In addition,
n-gram parsing is capable of producing partial parsing even if
the whole sentence is not grammatically correct. This will be
especially useful in applications related to user-contributed
contents such as comments or blogs or to social networks such
as Facebook and Twitter, given that in many cases texts from
such sources cannot be parsed with classical parsers.

Marzieh Fadaee, Hamidreza Ghader, Heshaam Faili, and
Azadeh Shakery from Iran present a statistical-based method
for automatic construction of WordNet-like dictionaries.
WordNet is a dictionary that provides information vital for
most of the current language processing technologies.

However, the original WordNet was developed for English.
While WordNet-like dictionaries of varying quality and
completeness exist for a small number of major languages, the
great majority of languages, spoken by a considerable part of
humankind, lack such a very important resource. Fadaee et al.
show that for such a language as Persian, their method
produces highly accurate WordNet-like dictionary.

Yanhui Gu, Zhenglu Yang, Miyuki Nakano, Masaru
Kitsuregawa from Japan aim at boosting both the
effectiveness and efficiency of measuring sentence similarity
by combining various existing sentence similarity measuring
techniques. They also introduce a number of optimization
strategies and give insights into balancing of effectiveness and
efficiency of measuring sentence similarity, a task of crucial
importance for many natural language processing applications
such as information retrieval, question answering, information
extraction, text mining, text summarization, and machine
translation, to name only a few.

Carlos Cobos and Martha Mendoza, and Elizabeth León
from Colombia, Milos Manic from the USA, and Enrique
Herrera-Viedma from Spain address the task of web page
clustering. Web page clustering improves the user experience
in information retrieval by presenting the user with a whole
cluster of roughly equivalent or similar documents instead of
individual documents, which helps the user to grasp all the
alternatives at a glance and not dig into a long list of very
similar pages. Cobos et al. report that 90% of the users agreed
on that their method improves the search process.

Prashant Mathur, Nick Ruiz, Marcello Federico from Italy
show how automatic translation of text segments can be used
to help human translators in manual translation. Generally,
automatic translation output needs extensive editing effort
from human translators to reach the quality of manual
translation. In many cases it is faster for the translator to type
the translated text than to correct a suggestion from an
automatic system; in other cases it is faster to correct the
suggestion than to type the translation from scratch. Reading
each suggestion and deciding whether it is easier to correct it
or to discard it takes even more time and effort. Mathur et al.
show how to automatically decide in which cases suggestions
are likely to be useful and thus are to be shown to the
translator for editing, and it which cases it is better to allow
the user to type the translation without asking him or her
explicitly.

Amitava Kundu, Dipankar Das, and Sivaji Bandyopadhyay
from India address the problem of automatic understanding of
the contents of movies. This task is important on the one hand
for contents-based recommender systems in order to

L

3 Polibits (47) 2013ISSN 1870-9044

recommend specific movies to users, and, on the other hand, it
can be a source of information on real-world situations for
computers to automatically learn common-sense knowledge.
Kundu et al. present a method for detection the change of
scene by analyzing the movie script.

The next four papers are regular papers on diverse topics of
artificial intelligence, computer science, and automatic
control.

Amir Elalouf and Eugene Levner from Israel and
T.C.E. Cheng from Hong Kong discuss the problem of routing
mobile agents in computer networks. Congestion in the
network environment can cause unpredictable delays in
information transfer and, in particular, in routing of mobile
agents, which can be undesirable in time-sensitive
applications. Elalouf et al. consider a problem of finding a
path in the network that with some probability guarantees that
the information will be passed within the specified time. They
show that this is an NP-hard problem, and present algorithms
for its exact or approximate solution.

María Bárbara Calva-Yáñez, Paola Andrea Niño-Suárez,
Miguel Gabriel Villarreal-Cervantes, Gabriel Sepúlveda-
Cervantes, and Edgar Alfredo Portilla-Flores from Mexico
consider a problem of optimal control or a four-bar
mechanism with spring and damping forces. They show how
this dynamic optimization problem can be solved to with
evolutionary techniques, specifically, a differential evolution
algorithm. The efficiency of the proposed method is verified
with a simulation experiment.

Mailyn Moreno Espino, Alternán Carrasco Bustamante,
Alejandro Rosete Suárez and Marta Dunia Delgado Dapena
from Cuba propose software development patterns for agent-
based programs. Agents are active software components,
which, in contrast to objects, not only react to external
requests but perform actions when they deem appropriate
judging on the state of the system and the internal state of the
agent. While object-oriented programming is now a mature
and stable area with decades of experience, agent-oriented

programming is still novel and lacks the variety of well-
established methodologies that object-oriented programming
has. Moreno Espino et al. show how agent-oriented elements
can be incorporated into well-established object-oriented
methodology.

L.E. Gómez, J.H. Sossa, R. Barrón, F.J. Cuevas,
J.F. Jiménez from Mexico present their improvements to
music recommendation, which is an application with very
high commercial demand and which affect the quality of life
of a considerable part of humankind. Music recommendation
systems help people choose, or just automatically offer, the
music pieces or songs to listen in their everyday environment,
basing on the knowledge of their preferences extracted from
various sources, such as the history of songs the user has
chosen in the past. Most often the selection is done basing on
the metadata associated with the song, such as genre, author,
singer, year, etc., which are numbers or text strings. Gómez et
al. show that with the user of artificial neural networks,
namely dynamic neural networks, it is possible to compare
and recommend music basing on the acoustic properties only
and not on metadata. This can lead to better recommendation
of songs lacking metadata at all, and to improved
recommendation of songs that have them.

This issue of Polibits will no doubt be useful for
researchers, students, and general public interested in artificial
intelligence, especially computational semantics and natural
language processing, as well as other areas of computer
science and automatic control.

Efstathios Stamatatos

Assistant Professor,
Department of Information and

Communication Systems Engineering,
University of the Aegean, Greece

4Polibits (47) 2013 ISSN 1870-9044

N -gram Parsing for Jointly Training a
Discriminative Constituency Parser

Arda Çelebi and Arzucan Özgür

Abstract—Syntactic parsers are designed to detect the complete
syntactic structure of grammatically correct sentences. In this
paper, we introduce the concept of n-gram parsing, which
corresponds to generating the constituency parse tree of n
consecutive words in a sentence. We create a stand-alone n-gram
parser derived from a baseline full discriminative constituency
parser and analyze the characteristics of the generated n-gram
trees for various values of n. Since the produced n-gram trees are
in general smaller and less complex compared to full parse trees,
it is likely that n-gram parsers are more robust compared to full
parsers. Therefore, we use n-gram parsing to boost the accuracy
of a full discriminative constituency parser in a hierarchical
joint learning setup. Our results show that the full parser jointly
trained with an n-gram parser performs statistically significantly
better than our baseline full parser on the English Penn Treebank
test corpus.

Index Terms—Constituency parsing, n-gram parsing, discrim-
inative learning, hierarchical joint learning.

I. INTRODUCTION

PARSING a natural language sentence is a process of
characterizing the syntactic description of that sentence

based on the syntax of its language. Over the last half-century,
there have been many techniques developed to improve
parsing accuracy. Some of the studies have targeted the model
that the parser relies on, such as by replacing rule-based
approaches [1], [2] with statistical models like generative [3],
[4] and discriminative ones [5], [6]. Others introduced external
ways of boosting the parser, such as by using a reranker [7],
[8], by bootstrapping it with itself in a self-training setup [9],
or by using partial parsing in a co-training setup [10]. Another
recent thread of research is about a more specialized form of
the co-training approach, where multiple models from different
domains are jointly trained together and help each other to
do better. One example is [11], where they introduce the
Hierarchical Joint Learning (HJL) approach to jointly train
a parser and a named entity recognizer. Their HJL model
achieved substantial improvement in parsing and named entity
recognition compared to the non-jointly trained models.

In this paper, we aim to improve the accuracy of a
discriminative constituency parser by training it together with
another parser in the HJL setup. While our actual parser works

Manuscript received on December 7, 2012; accepted for publication on
January 11, 2013.

Arda Çelebi and Arzucan Özgür are with Department of Computer
Engineering, Boğaziçi University, Bebek, 34342 İstanbul, Turkey (e-mail:
{arda.celebi, arzucan.ozgur}@boun.edu.tr).

on complete sentences, its accompanying parser tackles the
parsing task in a less complex way, that is, by parsing n-grams
instead of complete sentences. To the best of our knowledge,
this is the first study that introduces the concept of n-gram
parsing. Even though syntactic parsers expect grammatically
correct and complete sentences, an n-gram parser is designed
to parse only n consecutive words in a sentence. An outputted
n-gram tree is still a complete parse tree, but it covers only n
words instead of the whole sentence. We derive our n-gram
parser from a discriminative parser which was implemented
based on [12]. After analyzing the characteristics of n-gram
parsing, we train the full parser together with the n-gram
parser. Our underlying hypothesis is that the n-gram parser
will help the full parser at cases where the n-gram parser
does better. We performed experiments with different n-gram
sizes on the English Penn treebank corpus [13] and obtained a
statistically significant increase in the accuracy of the jointly
trained full parser over the original (non-jointly trained) full
parser.

This paper continues with the related studies. Following
that, in Section III, we introduce the concept of n-gram
parsing and the characteristics of the n-gram trees. In
Sections IV and V, we describe how we perform discriminative
constituency parsing and how we use the HJL approach,
respectively. Before discussing the experiments, we introduce
the data and the evaluation methods that we used in Section VI.
We present the experimental results obtained with the n-gram
parser alone and the jointly trained parser. We conclude and
outline future directions for research in the last section.

II. RELATED WORK

In this paper we tackle the problem of improving
the performance of a discriminative constituency parser
by training it with an n-gram parser using hierarchical
joint learning. Although generative models [3], [4] still
dominate the constituency parsing area due to their faster
training times, a number of discriminative parsing approaches
have been proposed in the recent years motivated by the
success of discriminative learning algorithms for several NLP
tasks such as part-of-speech tagging and relation extraction.
An advantage of discriminative models is their ability to
incorporate better feature rich representations. There are three
different approaches for applying discriminative models to the
parsing task. The first and perhaps the most successful one

5 Polibits (47) 2013ISSN 1870-9044; pp. 5–12

is to use a discriminative reranker to rerank the n-best list
of a generative parser [5], [7], [6]. To our knowledge, the
forest-based reranker in [8] is the best performing reranker
that helps its accompanying parser to achieve an F1 score
of 91.7%1. The second approach considers parsing as a
sequence of independent discriminative decisions [14], [15].
By discriminative training of a neural network based statistical
parser, an F1 score of 90.1% is obtained in [15]. The third
approach, which we adapted for this paper from [12], is to
do joint inference by using dynamic programming algorithms
in order to train models and use these to predict the globally
best parse tree. With this, an F1 score of 90.9% is achieved
in [12]. Due to their notoriously slow training times, however,
most discriminative parsers run on short sentences. That is
why we use sentences that have no more than 15 words for
full sentence parsing in this study.

One of the aspects of our research is that it involves
working with multiple parsers at the same time, that is the
n-gram parser and the full sentence parser. There have been
a couple of studies that experimented with multiple parsers
in the literature. One example is [16] which extended the
concept of rerankers by combining k-best parse outputs from
multiple parsers and achieved an F1 score of 92.6%. In [17],
Fossum and Knight worked on multiple constituency parsers
by proposing a method of parse hybridization that recombines
context-free productions instead of constituents in order to
preserve the structure of the output of the individual parsers
to a greater extent. With this approach, their resulting parser
achieved an F1 score of 91.5%, which is 1 point better than
the best individual parser in their setup.

Another thread of research related to ours is jointly training
multiple models. This evolved from the concept of multi-task
learning, which is basically explained as solving multiple
problems simultaneously. In the language processing literature,
there have been a couple of studies where this concept
is adapted for multi-domain learning [18], [19], [20]. In
these studies, they make use of labelled data from multiple
domains in order to improve the performances on all of them.
In [11], for example, a joint discriminative constituency parser
alongside a named-entity recognizer is used and substantial
gains over the original models is reported. Like most of the
prior research, a derivative of the hierarchical model, namely
the Hierarchical Joint Learning (HJL) approach is used. In this
paper, we adapted this approach by replacing the named-entity
recognizer with an n-gram parser, which to our knowledge
hasn’t been attempted before in the literature.

The most distinguishing contribution of our research is the
introduction of n-gram parsing. To the best of our knowledge,
n-gram parsing has never been considered as a stand-alone
parsing task in the literature before. One reason might be that
n-gram trees have no particular use on their own. However,
they have been used as features for statistical models in either

1The performance scores reported in this section are for Section 23 of the
English Penn Treebank.

lexicalized or unlexicalized forms. For example, in [9] they
are used to train the reranking model of the self-training
pipeline. There are only a couple of studies in the literature
comparable to our notion of n-gram trees. One of them is
the stochastic tree substitution grammars (TSG) used in Data
Oriented Parsing (DOP) models in [21]. However, unlike TSG
trees, our n-gram trees always have words at the terminal
nodes. Another related concept is the Tree Adjunct Grammar
(TAG) and the concept of local trees proposed in [22]. As
in the case of TSG trees, TAG local trees also differ from
our n-gram trees by not having words at all terminal nodes
but one. Another related study was performed in [23], where
significant error reductions in parsing are achieved by using
n-gram word sequences obtained from the Web.

In the literature, the concept of n-grams is used in a number
of contexts to represent a group of n consecutive items.
This can be, for instance, characters in a string or words
in a sentence. In our research, we consider an n-gram as n
consecutive words selected from a sentence. n-gram parsing,
then, refers to the process of predicting the syntactic structure
that covers these n words. We call this structure an n-gram
tree. In this paper, we study the parsing of 3- to 9-grams in
order to observe how n-gram parsing differs with length and at
which lengths the n-gram parser helps the full parser more. A
sample 4-gram tree which is extracted from a complete parse
tree is shown in Figure 1. Compared to complete parse trees,
n-gram trees are smaller parse trees with one distinction. That
is, they may include constituents that are trimmed from one or
both sides in order to fit the constituent lengthwise within the
borders of the n-gram. We call such constituents incomplete,
and denote them with the -INC functional tag. n-gram parsing
is fundamentally no different than the conventional parsing of
a complete sentence. However, n-grams, especially the short
ones, may have no meanings on their own and/or can be
ambiguous due to the absence of the surrounding context.
Even though the relatively smaller size of n-gram trees makes
it easier and faster to train on them, their incomplete and
ambiguous nature makes the n-gram parsing task difficult.
Despite all, n-gram parsing can still be useful for the actual
full sentence parser, just like the partial parsing of a sentence
used for bootstrapping [10]. In this paper, we train the full
parser together with an n-gram parser and let the n-gram
parser help the full parser at areas where the n-gram parser is
better than the full one.

A. N -gram Tree Extraction Algorithm

In order to generate a training set for the n-gram parser,
we extract n-gram trees out of the complete parse trees of the
Penn Treebank, which is the standard parse tree corpus used in
the literature [13]. Since we use sentences with no more than
15 words (WSJ15) for complete sentence parsing, we use the
rest of the corpus (WSJOver15) for n-gram tree extraction.

The pseudocode of our n-gram tree extraction algorithm
is given in Fig. 2. It takes a complete parse tree as

6Polibits (47) 2013 ISSN 1870-9044

Arda Çelebi and Arzucan Özgür

Fig. 1. Sample 4-gram tree extracted from a complete parse tree

Require: n, width of the n-gram trees
Require: tree, parse tree of a sentence
len← length of the given sentence
i← 0
while i < len− n do
subtree← get subtree that covers [i, i+ n] span
trimmed ← trim subtree ’s constituents outside the
[i, i+ n] span, if any
if trimmed has any const. with no head child then
i++ and continue

end if
markedtree← mark all trimmed consts. as incomplete
filtered ← filter out incomplete unary rule chain from
the ROOT, if any
save filtered tree as n-gram tree
i++

end while

Fig. 2. Extracting and storing n-gram trees from a parse tree

input and returns all the extracted valid n-gram trees. It
starts by traversing the sentence from the first word and
preserves the minimum subtree that covers n consecutive
words. While doing that, it may trim the tree from one or
both sides in order to fit the constituents lengthwise within
the borders of the n-gram. Hence, the extracted n-gram trees
may contain incomplete and thus ungrammatical constituents,
which is not something that a conventional parser expects as
input. Nevertheless, we assume that not all of the trimmed
constituents are ungrammatical according to the concept of
generatively accurate constituents that we introduce in this
paper. This concept stems from the concept of the head-driven
constituency production process [3] where a constituent is
theoretically generated starting from its head child and
continuing towards the left and right until all children are
generated. If the head child is the origin of the production, then
it is safe to say that it defines the constituent. Therefore, our
n-gram tree extraction process makes sure that the head child
is still included in the trimmed constituents. Otherwise, the
whole n-gram tree is considered generatively inaccurate and

is thus discarded. If all the heads are preserved, the algorithm
marks the trimmed constituents with the -INC functional tag.
For example, the PP constituent of the 4-gram tree in Figure 1
is trimmed from right hand side and since the head child “IN”
is still included in the constituent, it is considered generatively
accurate. The corresponding constituent is marked with an
-INC tag and the extracted tree is stored as a valid 4-gram
tree. However, if we try to extract the next 4-gram in the same
sentence, it would have failed due to not being able to keep
the head of the rightmost NP. The -INC tags are later used
in the features in order to let the n-gram parser better predict
such incomplete cases. Following these steps, the extraction
process filters out the incomplete chains of unary rules that
can be reached from the ROOT constituent. The algorithm
also keeps the parent information of the ROOT constituent
of the n-gram tree as an additional context information.

B. Characteristics of n-gram Trees

As we apply the extraction algorithm on the WSJOver15
portion of the Penn Treebank, we get hundreds of thousands
of n-gram trees for each value of n in {3..9}. The
analysis of these data sets reveals interesting points about
the characteristics of such n-gram trees. Table I gives the
percentages of the most common constituents in each n-gram
training set along with the corresponding numbers obtained
from the complete parse trees of the WSJ15 portion, which we
use for training our full parser. The comparison indicates that
the percentages of the noun (NP), verb (VP), and prepositional
(PP) phrases in the n-gram trees are higher than the ones in
the complete parse trees. On the other hand, the percentages of
long-range constituents like S are lower for the n-gram trees,
which is expected as the extraction process disfavors such
constituents. Nonetheless, we see higher percentage in case
of another long-range constituent SBAR, which exemplifies
how the extraction process may still favor some long-range
constituents. Based on this analysis, we may postulate that
the increasing percentage of the NPs, VPs, and PPs per parse
tree may help the n-gram parser do a better job in addition to
the fact that they are smaller, thus less complex phrases.

7 Polibits (47) 2013ISSN 1870-9044

N-gram Parsing for Jointly Training a Discriminative Constituency Parser

TABLE I
PERCENTAGE OF THE MOST COMMON NON-TERMINAL CONSTITUENTS IN TRAINING SETS

Model NP VP PP ADJP ADVP S SBAR QP
3-gram 21.20 10.82 6.25 1.04 1.03 4.68 1.43 0.96
4-gram 20.69 10.87 6.44 1.05 1.07 4.93 1.64 0.85
5-gram 20.39 10.87 6.45 1.06 1.10 5.11 1.75 0.80
6-gram 20.11 10.81 6.49 1.04 1.10 5.21 1.84 0.79
7-gram 19.86 10.78 6.49 1.02 1.11 5.29 1.92 0.78
8-gram 19.68 10.74 6.50 1.01 1.11 5.35 1.99 0.77
9-gram 19.54 10.68 6.50 1.00 1.10 5.39 2.04 0.76
Full (WSJ15) 18.74 9.51 4.21 1.05 1.69 6.91 1.00 0.60

III. DISCRIMINATIVE CONSTITUENCY PARSING

In order to parse the n-grams and the complete sentences,
we implemented a feature-rich discriminative constituency
parser based on the work in [12]. It employs a discriminative
model with the Conditional Random Field (CRF) based
approach. Discriminative models for parsing maximize the
conditional likelihood of the parse tree given the sentence.
The conditional probability of the parse tree is calculated as
in Equation 1, where Zs is the global normalization function
and φ(r|s; θ) is the local clique potential:

P (t|s; θ) = 1

Zs

∏
r∈t

φ(r|s; θ), (1)

where
Zs =

∑
t′∈τ(s)

∏
r∈t′

φ(r|s; θ), (2)

φ(r|s; θ) = exp
∑
i

θifi(r, s). (3)

The probability of the parse tree t given the sentence s is the
product of the local clique potentials for each one-level subtree
r of a parse tree t which is normalized by the total local clique
potential of all possible parse trees defined by τ(s). Note that
the clique potentials are not probabilities. They are computed
by taking the exponent of the summation of the parameter
values θ for the features that are present for a given subtree r.
The function fi(r, s) returns 1 or 0 depending on the presence
or absence of feature i in r, respectively. Given a set of training
examples, the goal is to choose the parameter values θ such
that the conditional log likelihood of these examples, i.e., the
objective function L given in Equation 5, is minimized:

L(D; θ) =
∑

(t,s)∈D

(∑
r∈t
〈f(r, s), θ〉 − logZs,θ

)
(4)

−
∑
i

θ2i
2σ2

.

When the partial derivative of our objective function with
respect to the model parameters is taken, the resulting gradient
in Equation 5 is basically the difference between the empirical
counts and the model expectations, along with the derivative
of the L2 regularization term to prevent over-fitting. These
partial derivatives which are calculated with the inside-outside
algorithm by traversing all possible parse trees for a given

sentence are then used to update the parameter values at each
iteration. As in [12], we use stochastic gradient descent (SGD),
which updates parameters with a batch of training instances
instead of all in order to converge to the optimum parameter
values faster:

∂L
∂θi

=
∑

(t,s)∈D

(∑
r∈t

fi(r, s)− Eθ[fi|s]

)
− θi
σ2
. (5)

We use the same feature templates of [12] and the same
tool [24] to calculate the distributional similarity clusters
which are used in the feature definitions. However, we use
a different combination of corpora to calculate these clusters.
We gathered an unlabelled data set of over 280 million words
by combining Reuters RCV1 corpus [25], Penn treebank, and
a large set of newswire articles downloaded over the Internet.
Despite the difference, we tried to keep the size and the types
of contents comparable to [12]. We use the default parameter
settings for the tool provided by [24] and set the number of
clusters to 200. In order to handle out-of-vocabulary (OOV)
words better, we also introduce a new lexicon feature template
〈 prefix, suffix, base(tag) 〉, which makes use of the most
common English prefixes and suffixes. A feature is created by
putting together the prefix and suffix of a word, if available,
along with the base tag of that word. If it does not have
any prefixes or suffixes, NA is used, instead. As for n-gram
parsing, we did not include or exclude any features. Like
in [12], we also implemented chart caching and parallelization
in order to save time.

IV. HIERARCHICAL JOINT LEARNING

In this section, we show how we jointly train the n-gram
parser and the full parser. We use an instance of the multi-task
learning setup called the Hierarchical Joint Learning (HJL)
approach introduced in [11]. HJL enables multiple models to
learn more about their tasks due to the commonality among
the tasks. By using HJL, we expect the n-gram parser to help
the full parser in cases where the n-gram parser is better.

As described in [11], the HJL setup connects all the base
models with a top prior, which is set to zero-mean Gaussian in
our experiments. The only requirement for HJL is that the base
models need to have some common features in addition to the
set of features specific to each task. As both parsers employ
the same set of feature templates, they have common features

8Polibits (47) 2013 ISSN 1870-9044

Arda Çelebi and Arzucan Özgür

through which HJL can operate. All the shared parameters
between base models are connected to each other through this
prior. It keeps the values of the shared parameters from each
base model close to each other by keeping them close to itself.

The parameter values for the shared features are updated by
incorporating the top model feature into the parameter update
function as in Equation 6. While the first term is calculated
by using the update value from Equation 5, the second term
ensures that the base model m is not getting apart from the
top model by taking the difference between the top model and
the corresponding shared parameter value. The variance σ2

d is
a parameter to tune this relation:

∂Lhier(D; θ)
∂θm,i

=
∂Lhier(Dm, θm)

∂θm,i
− θm,i − θ∗,i

σ2
d

. (6)

As shown in Equation 7, the updates for the top model
parameter values are calculated by summing the parameter
value differences divided by the base model variance σ2

m, and
then by subtracting the regularization term to prevent over-
fitting:

∂Lhier(D; θ)
∂θ∗,i

=

(∑
mεM

θ∗,i − θm,i
σ2
m

)
− θ∗,i

σ2
∗
. (7)

As in the case of the discriminative parser described
in the previous section, SGD is used for faster parameter
optimization. At each epoch of SGD, a batch of training
instances is selected uniformly from each model in the setup.
The number of training instances coming from each set, hence,
depends on the relative sizes of the training sets.

V. EXPERIMENTAL SETUP

A. Data

We evaluate our models by using the English Penn treebank
corpus [13]. Like previous studies in this field, we use sections
02–21 for training, 22 for development, and 23 for testing.
For complete sentence parsing, we use only the sentences
that have no more than 15 words, that is WSJ15. To train
the n-gram parsers, on the other hand, we use the rest of
the Penn treebank, which we call WSJOver15. To test the
n-gram parsers, we use the n-gram trees extracted from the
development and the test sets of the WSJ15 in order to make
the results more comparable with the full parser. By using our
n-gram tree extraction algorithm, we extract n-gram trees for
n = [3, 9]. Table II gives the number of parse trees in the
training, development and test sets of each parser.

B. Evaluation

We use the evalb script2 to get labelled precision, recall,
and F1 scores. These are calculated based on the number of
nonterminals in the parser’s output that match those in the
standard/golden parse trees. We also report the percentage
of completely correct trees, the average number of brackets

2The evalb script is available on http://nlp.cs.nyu.edu/evalb.

TABLE II
NUMBER OF PARSE TREES FOR EACH PARSER

Model Training Set Dev. Set Test Set
3-gram 384,699 1,742 2,495
4-gram 318,819 1,341 1,916
5-gram 267,155 1,050 1,506
6-gram 227,505 807 1,158
7-gram 195,229 635 891
8-gram 168,075 486 667
9-gram 145,040 349 491
Full 9,753 421 603

crossing with the actual correct spans, and the percent of
guessed trees that have no crossing brackets with respect to
the corresponding gold tree. In order to better understand
the n-gram parser and the jointly trained parser, we also
evaluate how accurately these parsers handle different types
of constituents.

VI. EXPERIMENTS AND DISCUSSION

A. Baseline Parser

Our baseline parser is a discriminative constituency parser
that runs on complete sentences. In order to make it run at
its best, we set the learning factor η to 0.1 and the variance
σ2 to 0.1. We do 20 passes over the training set and use the
batch size of 15 for the purpose of SGD. Table III shows the
results we obtained with these settings on the development and
test sets of WSJ15 portion of the Penn treebank. Our baseline

TABLE III
RESULTS ON THE PENN TREEBANK

Dataset Precision Recall F1 score
Dev. Set 87.5 88.1 87.8
Test Set 86.4 86.4 86.4

parser achieves an F1 score of 87.8% on the development set
and 86.4% on the test set. Compared to the results obtained
in [12], our implemented version’s performance is a couple
of points behind. The difference might be caused by small
implementation details as well as by the different corpus that
we used to calculate the distributional similarity clusters as
discussed in Section IV.

B. N -gram Parser

Before training the full parser with the n-gram parser
using HJL, we test the stand-alone n-gram parsers in order
to understand where they are good at or where they fail,
especially with respect to the full parser. We experimented
with seven different n-gram sizes, i.e., with n = [3, 9]. Even
though there are hundreds of thousands of training instances
for each parser available from the WSJOver15 portion of the
Penn treebank, we train our models with 20, 000 instances
due to time and computational constraints. For a statistically
more reliable evaluation, we report the averages of the scores
obtained from five randomly selected versions of each training
set.

9 Polibits (47) 2013ISSN 1870-9044

N-gram Parsing for Jointly Training a Discriminative Constituency Parser

TABLE IV
RESULTS OF THE n-GRAM PARSERS FOR THE DEVELOPMENT SET

Model Precision Recall F1 score Exact Avg CB No CB TagAcc
3-gram 86.37 86.60 86.49 73.13 0.02 98.15 86.80
4-gram 85.55 85.89 85.72 66.50 0.08 94.86 87.88
5-gram 86.91 86.29 86.60 61.68 0.10 93.02 89.95
6-gram 86.68 86.41 86.54 54.76 0.16 89.33 90.67
7-gram 87.49 87.00 87.24 51.29 0.21 86.52 92.17
8-gram 87.12 86.77 86.94 49.48 0.28 83.05 92.63
9-gram 87.69 86.96 87.33 46.68 0.35 79.41 92.91

TABLE V
F1 SCORES ON THE MOST COMMON CONSTITUENTS FROM THE DEVELOPMENT SET

Model NP VP PP S SBAR ADVP ADJP QP
3-gram 89.26 89.86 92.04 84.69 56.31 73.19 46.50 75.27
4-gram 88.02 89.79 90.72 83.52 61.43 73.23 48.23 75.77
5-gram 88.35 90.42 89.81 85.77 72.39 76.31 52.22 72.96
6-gram 87.65 91.04 89.03 86.11 71.49 75.16 52.00 74.34
7-gram 87.80 91.73 88.40 87.39 77.91 76.87 50.09 84.45
8-gram 87.22 92.29 87.81 87.18 76.43 77.84 49.05 86.73
9-gram 87.79 91.76 87.33 87.46 76.37 72.21 53.66 86.43
Full 88.77 89.81 88.79 90.91 80.56 79.42 59.31 94.21

We use the same experimental setup of the baseline full
parser. However, we optimize the parameters specifically for
n-gram parsing. To make the n-gram parser run at its best, we
set the learning factor η to 0.05 and the variance σ2 to 0.1.
Instead of doing 20 iterations like we did for the full parser, we
observe that 10 iterations are enough. We choose a batch size
of 30, instead of 15 for the SGD. Both decisions are related to
the fact that the n-gram trees are relatively smaller compared
to the complete parse trees. Thus, an n-gram parser requires
a larger batch of training instances, but takes fewer iterations
to get to its best performance.

Table IV shows the averaged F1 scores obtained with all
seven n-gram parsers on the development set. The comparison
of our n-gram parsers with each other reveals a couple of
interesting points. Firstly, using bigger n-gram trees in general
leads to slightly higher F1 scores, but the increase in precision
is more apparent. Secondly, the fact that the 3-gram parser
achieves an F1 score of 86.5% by guessing 73.13% of the
parse trees exactly, suggests that finding the exact n-gram tree
is mostly an easy job, yet a small set of 3-gram trees contain
most of the errors. This observation does not hold for larger
n values, since the parsing task becomes more difficult for
bigger trees.

In order to do further analysis, we investigate how
accurately the n-gram parsers handle the different types of
constituents. Table V shows the average F1 scores of each
n-gram model for the most common constituents. The first
thing to notice is the degrading performance of handling
noun (NP) and prepositional (PP) phrases, and the improving
performance of handling verb phrases (VP) and declarative
clauses (S) as n increases. When n increases, longer as well
as more complex NPs and PPs are introduced. This results in
degrading performance for such phrases.

On the other hand, as the sizes of the n-gram trees increase,
it becomes easier to handle long-range constituents like VPs

and Ss, since the parser sees more of them in the training
set. The same argument holds for the remaining types of
constituents in Table V. Another interesting point is the
significantly lower accuracies of the n-gram parsers on QPs,
especially with smaller n-gram trees.

TABLE VI
ACCURACY ON THE INCOMPLETE CONSTITUENTS

IN THE DEVELOPMENT SET

% of Incomplete Incomplete % of Unidentified
Constituents Constituent Incomplete Const.

Model in Golden Trees Accuracy w.r.t. All Unidentifieds
3-gram 22.0 86.65 26.2
4-gram 17.4 85.78 21.1
5-gram 14.5 84.20 16.7
6-gram 12.3 83.41 15.2
7-gram 10.8 83.32 13.9
8-gram 9.5 83.92 11.5
9-gram 8.7 84.94 10.4

Table VI shows the performances of the n-gram parsers
on the incomplete constituents, as well as the percentages
of constituents that are incomplete and the percentages
of unidentified constituents from the golden trees that are
incomplete. In most cases, as n increases, the accuracies
on the incomplete constituents decreases. The contribution
of the incomplete constituents to the number of unidentified
constituents decreases as well.

However, this is more attributed to the fact that their
percentage with respect to all constituents drops as n increases.
Another point to notice is that despite its high performance,
more than a quarter of the constituents unidentified by the
3-gram parser are incomplete. Considering that the 3-gram
parser predicts 73.13% of the parse trees completely, it is
highly likely that the performance of the 3-gram parser is
affected by such constituents.

10Polibits (47) 2013 ISSN 1870-9044

Arda Çelebi and Arzucan Özgür

TABLE VII
AVERAGED F1 SCORES OF THE BASELINE FULL PARSER (B) JOINTLY TRAINED WITH EACH n-GRAM MODEL

Results for Dev. Set of the WSJ15 Results for Test Set of the WSJ15
Model(s) 1K 2K 5K 10K 1K 2K 5K 10K
B+3-gram 87.60 87.69 87.97 87.91 86.37 86.07 86.23 86.21
B+4-gram 87.93 87.98 87.99∗ 87.70 86.52 86.42∗∗∗ 86.44 86.54
B+5-gram 87.72 87.67 88.00 87.72 86.36 85.84 86.35 86.33
B+6-gram 87.88 87.73 88.12∗∗ 87.66 86.55 85.95 86.24 86.31
B+7-gram 87.83 87.94 88.05 87.72 86.58 86.16 86.24 86.42
B+8-gram 87.93 87.91 87.96 87.78 86.57∗∗ 86.45 86.16 86.43
B+9-gram 88.19∗ 87.89 87.89 87.86 86.46 86.42 86.44 86.59∗∗∗

TABLE VIII
F1 SCORES OF THE JOINTLY TRAINED PARSER ON THE MOST COMMON CONSTITUENTS IN THE DEVELOPMENT SET

Model(s) NP VP PP S SBAR ADVP ADJP QP
B+3-gram 88.91 89.87 89.39 90.20 80.09 80.05 64.51 92.44
B+4-gram 88.82 90.30 89.43 90.26 81.00 79.51 61.65 92.14
B+5-gram 89.10 90.21 89.23 90.22 79.44 79.56 61.23 92.68
B+6-gram 89.19 90.15 89.30 90.26 80.55 79.75 63.18 93.07
B+7-gram 89.04 90.19 89.15 90.35 80.73 79.31 62.93 93.03
B+8-gram 88.96 90.17 88.90 90.27 80.91 79.26 61.11 92.48
B+9-gram 88.86 90.14 89.06 90.12 79.45 79.07 62.38 92.74
Baseline (B) 88.77 89.81 88.79 90.91 80.56 79.42 59.31 94.21

C. Jointly Trained Parser

In order to boost the accuracy of the full parser, we train
it along with each n-gram parser. For the full and n-gram
models, we use the previously used variance settings, that is
0.1. We set the top model variance σ2

∗ to 0.1 as well. We set
the learning factors for the n-gram models and the top model
to 0.1, whereas we use 0.05 for the full parsing model. With a
lower learning rate, we make sure that the full parsing model
starts to learn at a slower pace than usual so that it doesn’t
directly get into the effect of the accompanying n-gram model.
As in the case of the baseline full parser, we do 20 passes over
the training set and at each iteration, we update the parameters
with a batch of 40 training instances gathered from all training
sets in the setup.

In order to evaluate the effect of the training set size for
each n-gram model, we use training sets of four different
sizes for the n-gram parsers. We execute each experiment
three times with randomly selected training sets. Table VII
shows the averaged F1 scores obtained by the jointly trained
full parser on the development and test sets of the WSJ15.
The rows indicate which models are trained together, whereas
each column corresponds to a training set of different size
for the n-gram model. In case of the full parser, we use the
standard training set of the Penn treebank, which contains
9, 753 instances.

Scores in bold in Table VII indicate that the value is
significantly3 better than the baseline value according to the
t-test. When we compare the results with the baseline F1 score
of 87.8% on the development set and 86.4% on the test set, we
observe slight improvement at some of the configurations. In
general, the jointly trained full parser outperforms the baseline

3The superscript * adjacent to the F1 scores indicates that its significance is
p < 0.01. In case of ** and ***, it is p < 0.005 and p < 0.001, respectively.

parser when it is trained alongside an n-gram parser that uses
a relatively smaller training set, like 5,000 instances for the
development set and 1,000 instances for the test set. The best
results though, are obtained by jointly training the baseline
parser with the 9-gram parser. These results are statistically
significantly better than the ones of the non-jointly trained full
parser both for the development and test sets. In addition to
these comparisons, we also observed that within 20 iterations,
the jointly trained full parser reaches its best performance
faster with respect to the baseline parser, which shows the
push of the n-gram parser over the full parser.

We also analyze how accurately the jointly trained parser4

handles different constituent types. Table VIII shows the
averaged F1 scores for the most common constituent types
in the development set. The results indicate a couple of
interesting reasons behind the slight improvement of the jointly
trained full parser over the baseline. The first one is the slight
improvement on NPs as the n-grams are getting bigger, which
is especially visible with the best performing configuration
among them, that is the one with the 6-gram model. PPs and
VPs are also better processed with almost all jointly trained
models. The biggest improvement is seen with the adjective
phrases (ADJPs), especially when smaller n-grams are used.
Even though the impact of ADJPs to the overall result is
small compared to the other phrase types like NPs and PPs,
this improvement is still worth mentioning. It is interesting to
note that the same analysis on the stand-alone n-gram parsers
reveals that they are not that good with ADJPs. Another thing
to notice is the degrading performance over the QPs, as well as
SBAR and S type constituents due to the fact that the n-gram
parsers perform relatively worse on them (see Table V).

4Each accompanying n-gram parser in the HJL setup uses 5,000 training
instances.

11 Polibits (47) 2013ISSN 1870-9044

N-gram Parsing for Jointly Training a Discriminative Constituency Parser

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced n-gram parsing and analyzed
how it is different than full sentence parsing. We observed
that the bigger n-grams we use, the better accuracies we get,
mostly due to increasing context information. We showed that
the n-gram parsers are better than the full parser at parsing
NPs, VPs, and PPs, but worse at parsing Ss and SBARs.
After analyzing the stand-alone n-gram parsers, we used them
for jointly training a full discriminative parser in the HJL
setup in order to boost the accuracy of the full parser. We
achieved statistically significant improvement over the baseline
scores. The analysis of the results obtained with the jointly
trained parser revealed that the resulting parser is better at
processing NPs, VPs, PPs, and surprisingly ADJPs. However,
it is negatively influenced by the performance of the n-gram
parser over constituents like S and SBAR. Furthermore, it
achieves its best performance faster than the baseline parser,
indicating yet another benefit of training alongside an n-gram
parser.

As future work, we plan to improve our baseline parser
in order to make the jointly trained parser more competitive
with respect to its peers in the literature. We will explore new
approaches for selecting better n-gram trees to improve the
quality of the training data. We also plan to use multiple n-
gram parsers in joint training instead of just one. In addition,
we will use the n-gram trees and the HJL setup to build a
self-trained parser by expanding the n-gram parser’s training
data with n-gram trees extracted from the output of the full
sentence parser. This will enable the full sentence parser to be
indirectly trained with its own output.

ACKNOWLEDGMENTS

We thank Brian Roark and Suzan Üskudarlı for their
invaluable feedback. This work was supported by the Boğaziçi
University Research Fund 12A01P6.

REFERENCES

[1] T. Kasami, “An efficient recognition and syntax-analysis algorithm
for context-free languages,” Technical report, Air Force Cambridge
Research Lab, 1965.

[2] J. Earley, “An effcient context-free parsing algorithm,” Communications
of the ACM, vol. 13(2), pp. 94–102, 1970.

[3] M. Collins, “Head-driven statistical models for natural language
parsing,” Ph.D. dissertation, Department of Computer and Information
Science, University of Pennsylvania, 1999.

[4] E. Charniak, “Statistical parsing with a context-free grammar and word
statistics,” Proceedings of AAAI-97, pp. 598–603, 1997.

[5] A. Ratnaparkhi, “Learning to parse natural language with maximum
entropy models,” Machine Learning, vol. 34(1–3), pp. 151–175, 1999.

[6] E. Charniak, “A maximum-entropy-inspired parser,” Proceedings of the
North American Association of Computational Linguistics, 2000.

[7] M. Collins, “Discriminative reranking for natural language parsing,”
Proceedings of ICML-2000, pp. 175–182, 2000.

[8] L. Huang, “Forest reranking: Discriminative parsing with non-local
features,” Proceedings of Ninth International Workshop on Parsing
Technology, pp. 53–64, 2005.

[9] D. McClosky, E. Charniak, and M. Johnson, “Effective self-training for
parsing,” Proceedings of HLT-NAACL, 2006.

[10] S. Abney, “Part-of-speech tagging and partial parsing,” Corpus-Based
Methods in Language and Speech Processing, Kluwer Academic
Publishers, Dordrecht, 1999.

[11] J. R. Finkel and C. D. Manning, “Hierarchical joint learning: Improving
joint parsing and named entity recognition with non-jointly labeled data,”
Proceedings of ACL 2010, 2010.

[12] J. R. Finkel, A. Kleeman, and C. D. Manning, “Efficient, feature-based
conditional random field parsing,” Proceedings of ACL/HLT-2008, 2008.

[13] M. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a
large annotated corpus of English: The Penn Treebank,” Computational
Linguistics, vol. 19(2), pp. 313–330, 1993.

[14] A. Ratnaparkhi, “A linear observed time statistical parser based on
maximum entropy models,” Proceedings of EMNLP, pp. 1–10, 1997.

[15] J. Henderson, “Discriminative training of a neural network statistical
parser,” 42nd ACL, pp. 96–103, 2004.

[16] H. Zhang, M. Zhang, C. L. Tan, and H. Li, “K-best combination of
syntactic parsers,” Proceedings of EMNLP 2009, pp. 1552–1560, 2009.

[17] V. Fossum and K. Knight, “Combining constituent parsers,” Proceedings
of NAACL 2009, pp. 253–256, 2009.

[18] H. Daume III and D. Marcu, “Domain adaptation for statistical
classifiers,” Journal of Artificial Intelligence Research, 2006.

[19] J. R. Finkel and C. D. Manning, “Nested named entity recognition,”
Proceedings of EMNLP 2009, 2009.

[20] ——, “Joint parsing and named entity recognition,” Proceedings of the
North American Association of Computational Linguistics, 2009.

[21] R. Bod, R. Scha, and K. Sima’an, “Data oriented parsing,” CSLI
Publications, Stanford University, 2003.

[22] A. Joshi, L. Levy, and M. Takahashi, “Tree adjunct grammars,” Journal
of Computer and System Sciences, vol. 10:1, pp. 136–163, 1975.

[23] M. Bansal and D. Klein, “Web-scale features for full-scale parsing,”
Proceedings of 49th Annual Meeting of ACL: HLT, pp. 693–702, 2011.

[24] A. Clark, “Combining distributiona and morphological information for
part of speech induction,” Proceedings of the tenth Annual Meeting of
the European Association for Computational Linguistics (EACL), pp.
59–66, 2003.

[25] T. Rose, M. Stevenson, and M. Whitehead, “The Reuters corpus
volume 1 - from yesterday’s news to tomorrow’s language resources,”
Proceedings of the 3rd international conference on language resources
and evaluation., 2002.

12Polibits (47) 2013 ISSN 1870-9044

Arda Çelebi and Arzucan Özgür

Automatic WordNet Construction Using
Markov Chain Monte Carlo

Marzieh Fadaee, Hamidreza Ghader, Heshaam Faili, and Azadeh Shakery

Abstract—WordNet is used extensively as a major lexical
resource in information retrieval tasks. However, the qualities
of existing Persian WordNets are far from perfect. They are
either constructed manually which limits the coverage of Persian
words, or automatically which results in unsatisfactory precision.
This paper presents a fully-automated approach for constructing
a Persian WordNet: A Bayesian Model with Markov chain
Monte Carlo (MCMC) estimation. We model the problem of
constructing a Persian WordNet by estimating the probability of
assigning senses (synsets) to Persian words. By applying MCMC
techniques in estimating these probabilities, we integrate prior
knowledge in the estimation and use the expected value of
generated samples to give the final estimates. This ensures great
performance improvement comparing with Maximum-Likelihood
and Expectation-Maximization methods. Our acquired WordNet
has a precision of 90.46% which is a considerable improvement
in comparison with automatically-built WordNets in Persian.

Index Terms—Semantic network, WordNet, ontology, Bayesian
inference, Markov chain Monte Carlo, Persian.

I. INTRODUCTION

NOWADAYS WordNet as an ontology, where the relations
between word senses are interpreted as relations between

concepts, is widely used in different areas of information
retrieval and linguistic researches such as machine translation,
text classification, word sense disambiguation, and text
retrieval.

Princeton university constructed the first WordNet in
English in 1995 employing human experts [1]. In Princeton
WordNet (PWN) English words have been grouped into sets
of cognitive synonyms called synsets. Synsets in PWN are
also interlinked by means of conceptual semantics and lexical
relations. Each English word may appear in several synsets in
PWN, which are realized as senses of that word.

Acknowledgment of the practicality of PWN leads many
researchers to develop a WordNet in languages other than
English. The obvious obstacle of developing a WordNet from
scratch is that it is very labor intensive and time consuming,
so different methods were proposed to construct a WordNet
automatically or semi-automatically. Constructing a WordNet
automatically can be categorized into two approaches: merging
methods, and expanding methods. The merging methods build

Manuscript received on December 7, 2012; accepted for publication on
January 11, 2013.

All authors are with the School of ECE, College of Engineering, University
of Tehran, Tehran, Iran; Heshaam Faili and Azadeh Shakery are also with the
School of Computer Science, Institute for Research in Fundamental Science
(IPM), P.O. Box 19395-5746, Tehran, Iran (e-mail: {m.fadaee, h.ghader, hfaili,
shakery}@ut.ac.ir).

the WordNet in a specific language based on monolingual
resources in that language, and then map the created WordNet
to existing WordNets of other languages, oftentimes PWN. The
expanding methods use a basis WordNet (commonly PWN)
so that they preserve the original WordNet structure, and
construct the WordNet in a specific language by translating the
synsets or applying different methods of learning. Resources
in this category can be bilingual or multilingual. Either way
having links between a WordNet in secondary language with
PWN can improve the usability of said WordNet.

For example the BabelNet project [2], which uses PWN as
the lexicographic resource and Wikipedia pages in different
languages as the encyclopedic knowledge. It utilizes machine
translation methods in order to enrich the lexical information
and defines links between Wikipedia pages and WordNet
items.

Although there have been several attempts in constructing a
WordNet for Persian language, the lack of a sizable WordNet
is still noticeable. Some of the most significant researches on
Persian WordNet are introduced in [3], [4], [5].

In [3] the authors established a scoring function for
ranking synsets and respective words automatically and
selected the highest scores as the final WordNet. This
method achieved a precision of 82.6% with manually
judged candidates. In [4] an unsupervised learning approach
was proposed, which constructed a WordNet automatically
using Expectation-Maximization (EM) method. This research
collects a set of words and their possible candidate synsets,
and assigns a probability to each candidate. By applying an
EM method these probabilities are updated in each iteration
of the algorithm until the changes in probabilities are minute.
The final WordNet was built by selecting the 10% of highly
probable word-synsets and achieved a precision of 86.7%.
Another project of building a Persian WordNet was FarsNet,
which uses a semi-automatic method for building the Persian
WordNet with some predefined heuristics and then judges each
entry manually with human experts’ knowledge [5].

The automatic approaches of constructing a Persian
WordNet still need improvements in precision, and the manual
approaches are time consuming and slow-growing. Our work
aims for constructing a scalable Persian WordNet with better
quality by defining a Bayesian Inference for estimating the
probabilities of links between words and synsets. The proposed
model is independent of language and can be applied in
any language with basic resources: a raw corpus, a bilingual
dictionary, and PWN.

13 Polibits (47) 2013ISSN 1870-9044; pp. 13–22

We propose a model that utilizes a Markov chain Monte
Carlo technique, namely Gibbs Sampling, in estimating the
probabilities. This model iteratively disambiguates words
according to their neighbors in a context and assigns
probabilities to each possible sense of a word. After a
certain number of iterations, the mathematical expectation of
probabilities is the concluding value for each link.

In this research we construct a Probabilistic Persian
WordNet, in which each Persian word is associated with
relative PWN synsets and a probability that signifies these
links. Using these links, the relations defined in the PWN is
also applicable in our Persian WordNet.

Our proposed unsupervised approach to create a WordNet
is very similar to the approach of [4] in some aspects. The
main difference between these two approaches is that the
Expectation-Maximization method in the research of [4] has
been replaced by a fully Bayesian inference via Markov chain
Monte Carlo. The Bayesian inference tries to estimate and
update the probabilities assigned to word-synsets links, in an
iterative process as Expectation-Maximization does. But this
iterative process is a Markov chain Monte Carlo algorithm
that estimates the posterior distribution. Each iteration of
the algorithm includes 2 steps: (i) assigning correct senses
to the words in the corpus using current estimate of the
probabilities via a word sense disambiguation method, (ii)
estimating new probability values according to the conditional
posterior distribution, which has recently assigned senses in
its condition.

Our model is expected to do better than the state-of-the-art
EM method for two reasons: it incorporates the prior
knowledge that the multinomial distribution over possible
senses of a word is a sparse one, in its estimation
of the posterior distribution, and it generates lots of
samples from posterior distribution and use the expected
value of these samples to give the final estimate, while
the Expectation-Maximization (EM) method finds a local
maximum in the search space and returns it as the final
estimate. Thus, our approach takes the parameter values that
may have generated the observed data with less probability
into account, while the EM method fails to consider them.

Our WordNet does not have the obstacles of time and
expert knowledge like the manual methods of constructing
a Persian WordNet. By establishing a specified size for
our WordNet (approximately 10,000 word-synset pairs) we
achieve a precision of 90.46%. This is an improvement
in comparison with the EM method, the state-of-the-art in
constructing a Persian WordNet automatically, which achieved
a precision of 86.7% with approximately the same size.

The rest of the paper is organized as follows: Section II
presents an overview on several methods that have been
proposed in the area of automatic and semi-automatic WordNet
construction. Section III presents the details of the proposed
model for automatically constructing the WordNet, and the
training algorithm. Section IV explores experimental results

and evaluations. Lastly, the work is concluded and some future
works are suggested.

II. BACKGROUND

WordNet is a semantic network providing machine-readable
lexicographic information, first developed in Princeton
University [1] . Princeton WordNet is a lexical database
consisting of syntactic categories of English words—nouns,
verbs, adjectives and adverbs, grouped into lexicalized
concepts. Each cognitive synonym (synset) conveys a
conceptual meaning and is part of a relational network. In
WordNet several hierarchal relations are defined between
synsets and words, such as synonymy (similar), antonymy
(opposite), hyponymy (subordinate) and meronymy (part).

Princeton WordNet is currently the most advanced English
WordNet containing a wide range of English words
and word senses. It was created manually by English
linguists, but manual construction of WordNet is a time
consuming task and requires linguistic knowledge. In order
to achieve comprehensive WordNet in languages other than
English, many automatic and semi-automatic approaches were
presented.

EuroWordNet was a similar project but with the goal of
enriching the resources of Western European languages [6].
It started with four languages: Dutch (at the University
of Amsterdam), Italian (CNR, Pisa), Spanish (Fundacion
Universidad Empresa), and English (University of Sheffield,
adapting the Princeton WordNet); and later Czech, Estonian,
German, and French were added.

By applying a common framework between all WordNets
and integrating them into a single database, EuroWordNet
became a multilingual semantic network which could be used
in many multilingual applications.

In order to maintain a similar coverage in all languages,
first a set of 1,024 base concepts were created. Since these
concepts were not lexicalized in all languages, iteratively,
the base concepts were selected based on the common
concepts between the majority of European languages.
The base concepts were classified with the aid of a
language-independent top ontology.

EuroWordNet is not used widely due to licensing issues
and lack of further extensions. In [7] a freely-available French
WordNet (WOLF) was built automatically from multilingual
resources like Wikipedia and thesaurus. In the proposed
approach, they constructed a multilingual lexicon by aligning
a parallel corpus for five languages. By using multiple
languages, polysemous lexicon entries are disambiguated.
WOLF contains all four parts of speeches, including 32,351
synsets corresponding with 38,001 unique literals. The average
polysemy in WOLF is 1.21 synsets per literal but the core
vocabulary of it is sparse.

The resulting WordNet was evaluated both automatically
and manually. In the former approach, they compared WOLF
with the French WordNet, created as part of the EuroWordNet
project, in regard to the words that appeared in WOLF so as

14Polibits (47) 2013 ISSN 1870-9044

Marzieh Fadaee, Hamidreza Ghader, Heshaam Faili, and Azadeh Shakery

not to penalize the WOLF for not containing some words in
the utilized corpora. WOLF achieved a precision of 77.1% and
recall of 70.3%. In the latter approach they randomly selected
100 literals and the corresponding 183 synsets to judge them
by hand and achieved 80% correctness in assigned synsets.
In this paper it is shown that building a WordNet with the
alignment approach provides more basic synsets.

BalkaNet was another European project focusing on
Central and Eastern European languages [8]. The method of
constructing BalkaNet is comparable to EuroWordNet with
added features such as independence of every WordNets.
It uses individual monolingual WordNets that have already
been developed for the participant languages, including Greek,
Turkish, Romanian, Bulgarian, Czech and Serbian. BalkaNet
contains 15,000 comparable synsets in each language, and
30,000 literals. BalkaNet concept sets are very dense in the
sense that for any concept in the BalkaNet concept sets, all
of its hypernyms are also in the BalkaNet. Turkish WordNet
is a side-result of the BalkaNet project [9] containing 11,628
synsets and 16,095 literals. It has an average polysemy of 1.38.

Word sense disambiguation techniques are applied in
many approaches of constructing or expanding a WordNet.
In [10] they defined multiple heuristics including maximum
similarity, prior probability, sense ordering, IS-A relation, and
co-occurrence, for linking Korean words to English synsets.
The heuristics were then combined using decision tree learning
for non-linear relationship. To evaluate each of their proposed
heuristics separately, they manually judged the candidate
synsets of 3260 senses. The decision tree based combination
of the heuristics achieved 93.59% in precision and 77.12%
in recall. Their generated Korean WordNet contains 21,654
synsets and 17,696 nouns.

There are other attempts in constructing WordNets for
Asian languages. A Thai WordNet was constructed utilizing
machine-readable dictionaries [11]. In this semi-automatic
approach several criteria were defined to extract and evaluate
relations between translated words. To evaluate the candidate
links in each criterion they apply the stratified sampling
technique [12]. The final WordNet contains 19,582 synsets and
the corresponding 13,730 words and provides 80% coverage
and 76% accuracy.

Arabic WordNet was first introduced in [13]. By considering
three main criteria—connectivity, relevance and generality,
synsets were extracted and manually validated. In this project
they also generated a machine-understandable semantics in
first order logic for word meanings. The Arabic WordNet
consists of 11,270 synsets and 23,496 Arabic expressions.
There were several extensions of Arabic WordNet, particularly
the semi-automatic approach in [14]. They designed a
Bayesian network with four layers to equate Arabic words
and English synsets by using lexical and morphological rules.
The resulting WordNet has a precision of 67%.

There were several researches on constructing WordNet
in Persian language in recent years, focusing on Persian
adjectives [15], verbs [16], or nouns [17]. These methods

either use lexicographers’ knowledge in constructing the
WordNet manually, or proposing semi-automatic approaches.
PersiaNet was a project of Princeton University for a
comparable Persian WordNet with Princeton WordNet [17].
This work, which is strictly based on a volunteering
participation of experts, has a scarce lexical coverage. It uses
Persian orthography for representing words and also supports
a parallel Roman writing system in order to facilitate searching
for Persian words.

In [18] a semi automatic method was proposed using human
annotators to make the decision of relativeness of each word
and candidate synsets. In this work they introduced FarsNet
which consists of two parts: semantic lexicon and lexical
ontology. They used a bilingual dictionary, a syntactic lexicon
including the POS tags of the entries, a Persian POS tagged
corpus and WordNet in order to develop an initial lexicon
and perform word-sense disambiguation. A linguistic expert
reviewed the results to evaluate the method which gained a
70% accuracy.

They expanded their work later, completing FarsNet by
applying some heuristics and word sense disambiguation tech-
niques in an automated method with human supervision [5].
It consists of 9,266 synsets and 13,155 words. In this paper
we use FarsNet as the baseline in evaluating the quality of our
WordNet.

In [3] an automatic method was presented in which they
compute a similarity score between each Persian word and the
candidate English synsets and select the highest score as the
respective link. The score, containing the mutual information
of words, is computed from bilingual dictionaries and Persian
and English corpora. To evaluate the constructed Persian
WordNet they randomly selected 500 Persian words and
assessed the accuracy of the selected synsets. The precision
of unambiguous links between words and synsets is 95.8%,
and of ambiguous links is 76.4%. In total they achieved an
accuracy of 82.6%.

In [4] an unsupervised learning approach was proposed
for constructing a Persian WordNet. In this work they first
assemble a list of candidate English synsets for each Persian
word using a bilingual dictionary and Princeton WordNet.
In the next step they automatically connect English synsets
with Persian words using Expectation-Maximization method
and eliminates unrelated links. The probabilities of each link
are calculated in the Expectation step from the information
extracted from a Persian corpus. In the Maximization step,
the probabilities of selected candidate synsets is updated. In
order to evaluate the resulting WordNet they manually judged
1365 randomly selected links between words and synsets.
By accepting the top 10% of the probable links as the final
Persian WordNet 7,109 literals (from 11,076 words appeared
in the corpus) and 9,427 synsets were selected. The WordNet
accuracy is 89.7% for adjectives, 65.6% for adverbs and
61.2% for nouns. This approach strongly depends on the initial
Persian corpus that is used in the Expectation step and the
initial values of probabilities of links.

15 Polibits (47) 2013ISSN 1870-9044

Automatic WordNet Construction Using Markov Chain Monte Carlo

A. Markov chain Monte Carlo
Using Bayesian inference to estimate posterior over a

model, one may come across a situation in which the
posterior or an intermediate distribution could not be computed
analytically. In these cases, a widely used method is to estimate
the intended distribution using Markov chain Monte Carlo
techniques. The works [19], [20] are examples of dealing
with this kind of situation in Bayesian inference. In [20]
two MCMC techniques are used to induce a probabilistic
context free grammar in an unsupervised setting. In this work,
the MCMC methods are employed to sample from posterior
distribution over probabilities of CFG rules and sequence
of parse trees conditioned on the observed data. In [19] an
MCMC technique is put in action to find a MAP estimation
of a posterior distribution over POS tag sequence conditioned
on the observed data.

In order to estimate a distribution using MCMC techniques,
the techniques are used to generate sufficient samples from
the distribution. The MCMC techniques construct a Markov
chain whose desired distribution is equal to the distribution
intended to be sampled. This means that they provide the
transition probability between states of Markov chain so
that the probability of visiting a state Sti of the chain be
p(Sti) , according to the desired distribution. Then, they
generate samples by moving between states of the Markov
chain. Of course, some runout steps are required for the
model to take, before that the generated samples being
from the stationary distribution of the Markov chain. After
generating sufficient samples from the desired distribution,
these probabilistic choices can be used to calculate expectation
over states. This makes the method a Monte Carlo technique.
For example in [20], the sample values for θ, a random variable
corresponding to the probability of CFG rules, are used to
compute the expectation over it. Then, the resulted expectation
is used as the estimated value for probability of CFG rules.

1) Gibbs Sampling: Gibbs sampling [21] is a sampling
technique from class of Markov chain Monte Carlo techniques.
This technique is used in situations that the state of the
model is comprised of multiple random variables [22]. In other
words, the situations in which the joint distribution of multiple
random variables is intended to be sampled. If we assume
that each state in the model has k dimension or is a joint
of k random variables, the basic idea in this technique is to
sample each random variable involved in the state of the model
separately, but conditioned on the other k−1 dimensions [22].
That is to sample each random variable from the following
distribution:

P (rvi|rvt1, ..., rvti−1, rvt−1i+1 , ..., rv
t−1
k).

Here the superscript corresponds to time. It also provides
the information that how many samples are generated from
a random variable until current time. After sampling each
random variable once, using the conditional distribution above,
we will have one sample from the joint distribution of random
variables. Repeating this action for a sufficient number of

times, we will generate sufficient samples from the join
distribution. These samples can be used in a variety of ways
to compute an estimation of the intended distribution.

B. Dirichlet Priors

In recent years, the Bayesian methods for estimating
probabilities are widely favored over the maximum likelihood
estimation method among scientists working in computational
linguistics [19], [23]. One reason for this, is the fact that
Bayesian methods provide a way to take the prior knowledge
about the model into account when doing estimation. As a
standard example, taken from [23], suppose that we are given
a coin to decide whether it is fair or not. Tossing the coin 10
times, we observe this sequence of heads and tails: (T T T
T T T H H H H). Maximum likelihood estimation gives an
estimate of 0.6 for the probability of observing tail in next
toss. Maximum likelihood results this estimate by calculating
the parameter value that is most likely to generate observed
data. If we take θ as the probability of observing tail, that
means

θ̂ = arg max
θ
P (D|θ).

As one can see, no prior knowledge is incorporated in this
estimation. This is while the Bayesian methods take the
prior knowledge into account using Bayes rule. For example
maximize a posteriori estimation gives an estimate of θ as
follows:

θ̂ = arg max
θ
P (θ|D)

= arg max
θ

P (D|θ)P (θ)

P (D)

= arg max
θ
P (D|θ)P (θ).

This estimation provides the possibility that our expectation
of what θ could be, affect the final estimated value for θ.
Here, by using a Beta distribution, which is a two dimensional
version of dirichlet distribution, we can put a prior expectation
toward fairness or unfairness of the coin into the estimation. If
we choose parameters of the Beta distribution to be near zero,
this will put a prior in favor of unfairness of the coin into the
estimation. This means that an estimate of θ nearer to 0 or 1 is
more desirable. This characteristic of Bayesian methods makes
them more appropriate than maximum likelihood estimation,
because it provides the possibility of using linguistically
appropriate priors.

III. MODELING THE PROBLEM OF AUTOMATICALLY
CONSTRUCTING A WORDNET

A. The Approach

In this work, we create a probabilistic WordNet in which
each link between a word and its synsets has a probability
assigned to it. This probability signifies the relatedness of
each synset to the word.The proposed approach consists of
the following steps:

16Polibits (47) 2013 ISSN 1870-9044

Marzieh Fadaee, Hamidreza Ghader, Heshaam Faili, and Azadeh Shakery

1) Collect candidate synsets as possible senses for each
Persian word

2) Compute the probability of relatedness of each synset to
a particular word (iteratively)

3) Choose the highest word-synset probabilities as the final
WordNet

For the first step, we use a bilingual dictionary to find all
possible definitions of a Persian word in English. Then, we
use the Princeton WordNet to find all senses of the English
words and consider them as potential senses of the Persian
word.

In the next step, we compute the probabilities of the Persian
word having each of the senses extracted in the previous step.
These probabilities are computed according to different senses
of a word that appear in a raw corpus. This corpus contains
Persian words and the POS tags for each word, and so it aids
in building a POS-aware Persian WordNet.

We use a word sense disambiguation technique, previously
utilized in [4], as part of a Bayesian model in an unsupervised
configuration to assign the correct sense of each word based
on the context in which the word appears. During the process
of sense disambiguation of words in the corpus, we compute
the probabilities of assigning different senses to a word. As
a result, some senses of a word will be assigned very small
probabilities in comparison with other senses.

The algorithm iteratively computes the new probabilities
using Gibbs Sampling, which will be discussed in the
following section.

The algorithm uses a Markov Chain Monte Carlo (MCMC)
method, Gibbs sampling, and iteratively computes the
new probabilities. MCMC methods are widely used to
estimate probability distributions that could not be computed
analytically.

In the final step, we eliminate the senses assigned small
probabilities according to some measures, and use the
remaining senses to build up the Persian WordNet.

B. The Model

We define the probabilities of assigning synsets s1, ..., sn to
a word w as

θw : [θws1 , θws2 , ...θwsn]. (1)

If tw indicates a synset assigned to word w, tw|context
will have a multinomial distribution whose parameters are
in the vector θw. For ease of reference, we present our
notation in Table 1. For a multinomial with parameters
θw = [θws1 , ..., θwsk] a natural choice of prior is the
K-dimensional Dirichlet distribution, which is conjugate to the
multinomial [19]. If we assume that the dirichlet distribution
is symmetric and its K parameters are equal to α, α < 1
will favor sparse multinomial distributions for θw. As the
distribution of senses of a word in a context is a sparse
multinomial distribution, a Dirichlet distribution with α < 1
will be a linguistically appropriate prior in our model.

So we can safely assume that θw has a Dirichlet(αw)
distribution:

θw ∼ Dirichlet(αw). (2)

Suppose that θ is the vector of θw for all words. The goal of
constructing the WordNet in our model is obtaining a wise θ
which can be computed as follows:

P (θ|W) =
∑
t

P (t, θ|W), (3)

with W being the corpus we use for sense disambiguation and
t is a tag sequence of synsets. The distribution on the right
side of the equation could be written as follows:

P (t, θ|W) =
P (W |θ, t)P (θ, t)

P (W)

=
P (W |θ, t)P (θ, t)∑
t,θ P (W |θ, t)P (θ, t)

, (4)

which is intractable because of the large possible sets of t
and θ, which should be observed to compute the denominator.
If we take the Dirichlet prior into account, the posterior
distribution will change as follows:

P (t, θ|W,α), (5)

where α is a vector of parameters of the prior distributions
which are Dirichlet distributions.

Since computing the probability distribution of Equation 5
is intractable, we propose to use a Markov chain Monte Carlo
algorithm, Gibbs sampling, to generate samples from this
distribution and use the samples to compute a wise value for
θ. To use the Gibbs sampling method to generate samples
from P (θ, t|W,α), we have to sample each random variable
conditioned on the current value of the other random variables
constituting the state of the model. This means that we have
to sample from the following two probability distributions at
each step:

P (t|θ,W,α), (6)
P (θ|t,W, α). (7)

Formula (6) illustrates the sense assignments’ probabilities,
and Formula (7) illustrates the candidate senses’ probabilities.
In the following section the sampling process of these
two distributions and how we estimate the probabilities are
discussed in detail.

C. Estimating the Probabilities

In order to generate samples from (7) we can independently
sample each multinomial distribution P (ti|wi, contextwi , θ)
for all possible i. Then we use resulted value for each ti
as sense tag of wi. In the next step, given a value for t we
generate sample from (8).

17 Polibits (47) 2013ISSN 1870-9044

Automatic WordNet Construction Using Markov Chain Monte Carlo

TABLE I
NOTATION

w Persian word.
wordlist the list of all Persian words we want to include in our WordNet.
si Princeton WordNet synset.
wsi assigning synset si to Persian word w as a possible sense of that word.
θwsi probability of relateness of wsi
θw vector of probabilities of candidate senses for word w
θ vector of θws for all words.
αw Dirichlet parameter for the distribution of θw
α vector of αws for all words w in wordlist
W corpus, providing words w for disambiguation.
tw a random variable whose possible values are candidate senses si of word w
t vector of tws for all words w in wordlist

1) Sense Assignment Probability Estimation: In the
literature, a key assumption to induce correct sense of a word is
that the context surrounding the word is indicative of its correct
sense [23]. Making the same assumption, the distribution of
senses of a word conditioned on the word itself and its context
will be independent from the other words of the corpus and
their senses. So we can write:

P (t|θ,W,α) =
∏
i

P (twi |wi, contextwi , θ). (8)

Hence we involve the context in computing the probabilities
by considering a window of words rather than every individual
word.

Finding multinomial distribution P (twi |wi, contextwi , θ)
for each possible i, and using the distributions to interpret
the correct sense of each word wi could be viewed as a word
sense disambiguation task.

Word sense disambiguation is the task of interpreting senses
of a word in a context via supervised or unsupervised methods.
Most words in the Persian language are polysemous, so, in
order to differentiate between individual meanings of a word
we need to consider disambiguating its senses. To attain this
goal we use an ancillary Persian corpus, Bijankhan [24], as our
corpus for extracting statistical information. For every word
in the training set, windows of words are obtained from the
corpus containing the neighbors of that particular word for
every occurrence of it in the corpus.

The score of each word w and synset s is calculated from
the following formula:

score(w, s) =

∑
w′

∑
v θw′,s × PMI(w′, v)

n
, (9)

where w′ is a word that has s as its candidate synset, n is
the number of these words, v is a word in the window of
w, PMI is point-wise mutual information, and θw′,s is the
probability assigned to word w′ and sense s in the previous
iteration of the procedure. This score function disambiguates
a word by considering the senses of the neighbors of the word
in a context [4].

Using the scores computed in Equation 9, we can find the
distributions

P (twi
|wi, contextwi

, θ)

for all possible i by means of the following formula:

P (twi |wi, contextwi , θ) =
score(wi, twi)∑
j score(wi, sj)

. (10)

By involving all contexts in which a word is used in a
corpus—windows of words—individual senses of the word
have the chance of obtaining acceptable probabilities in the
computation. For better determining individual senses of every
word we consider the parts of speech of them. One of the
main attributes of every synsets in Princeton WordNet is the
part of speech of that sense. To take heed of this attribute we
consider individual parts of speech for every word and perform
the sampler on words and synsets in regard to parts of speech.

2) Candidate Sense Probability Estimation: In order to
compute the second distribution we assume that θw for each
word is independent from the others and as we discussed
prior distribution on θw is Dirichlet distribution. So the prior
probability on θ could be written as follows:

P (θ) =
∏

w∈wordList

P (θw|αw)

=
∏

w∈wordList

(
∏

s∈sensesw

1

B(αw)
θαs−1
s), (11)

where

B(αw) =

∏
s∈sensesw Γ(αs)

Γ(
∑
s∈sensesw αs)

, (12)

wordList is the list of all words we want to include in our
WordNet. As a result to formulation above, P (θ) will be
Dirichlet distribution and could be written as PD(θ|α), where
α is a vector containing αw for all words in wordList and is
the parameter of the prior Dirichlet distributions of θw.

Since the prior distribution of θ is conjugate prior to the
likelihood of the sense tags, the posterior on θ conditioned on
sense tags will be a Dirichlet distribution:

P (θ|t,W, α) ∝ P (t,W |θ, α)P (θ|α); (13)

∝ (
∏

w∈wordList,s∈sensesw

θCnw→s(t)
s θαs−1

s)

=
∏

w∈wordList,s∈sensesw

θCnw→s(t)+αs−1
s ,

18Polibits (47) 2013 ISSN 1870-9044

Marzieh Fadaee, Hamidreza Ghader, Heshaam Faili, and Azadeh Shakery

which could be written as

P (θ|t,W, α) = PD(θ|Cn(t) + α)

=
∏

w∈wordList

PD(θw|Cnw(t) + αw), (14)

where Cnw(t) is a vector of the number of times the
assignment w → si, where si ∈ sensesw, happened in the
context and Cn(t) is a vector of Cnw(t) for all w.

For this to be done, we sample each Dirichlet distribution,
PD(θw|Cnw(t) + αw), independently and put the results
together to constitute a sample from θ. To create sample
from the Dirichlet distribution, we use a Gamma distribution
and sample γsj from Gamma(αsj + Cnw→sj (t)) for all
αsj ∈ αw = (αs1 , ..., αsm) and finally set each θsj ∈ θw =
(θs1 , ..., θsm) as follows:

θsj =
γsj∑m
i=1 γsi

. (15)

So we use Formulas (8), (10), and (14) to generate samples
from Formulas (6) and (7). This will result in samples from
P (θ, t|W,α) as was discussed before. After sampling the
acceptable number of values for θ, we can compute the
Expectation of θ over these values which would grant us the
wise θ we were looking for.

IV. EXPERIMENTS AND EVALUATION

In this paper we have conducted different experiments to
evaluate our proposed method. This section carries out with
introducing the environment of the experiments and details on
different trials and the methods of evaluation applied in this
project.

A. Train Dataset

We use Bijankhan dataset [24] to take into account the
context for every word in order to perform an unsupervised
word sense disambiguation and compute θ values in the
iterative process. Bijankhan is a POS tagged corpus in the
Persian language consisting of news and colloquial texts. It
contains 500 documents and around 2.6 million manually
tagged words. The tag set consists of 40 different Persian
POS tags, however we only use the four main POS tags in
this experiment; verb, noun, adjective, and adverb.

B. Test Dataset

To evaluate the accuracy of our WordNet we use a manual
approach of assessing our results, in view of the fact that if
we wanted to automatically evaluate the WordNet we had to
compare the results with the existing Persian WordNets, which
wasn’t fair to our WordNet; by comparing our results with the
previous WordNets we would penalize the correctly assigned
word-synset pairs that do not exist in the earlier WordNets.

To avoid this, we opt for building a test set which we
have based on FarsNet, the semi automatically constructed
WordNet. FarsNet links are added to this test set as the correct

TABLE II
STATISTICS OF THE TEST DATA SET

Number of incorrect links (0) 3482
Number of correct links (1) 17393
size of the test dataset 20874

Fig. 1. Precision of Persian WordNet with respect to N , the size of WordNet
(the N most probable word-synset links) after 100 iterations

links. We also judged a subset of assigned words - synsets
links manually and added this information to the test set. Our
final gold data contains 3482 incorrect links and 17393 correct
links.

C. Results

Upon the termination of the algorithm, a WordNet in target
language and the probabilities of assigning each candidate
synsets to each word are acquired and are sorted based
on the probabilities, so by selecting the top − N most
probable word-synset pairs we obtain our Persian WordNet.
The parameter N determines the size of the WordNet; there is
a trade-off between precision of the WordNet and the coverage
over all Persian Words i.e. the size of the WordNet, N .

We define the precision of the WordNet as the number of
assigned links in the WordNet which appeared in the test data
as correct links divided by the total number of assigned links in
the WordNet which appeared in the test data. This definition of
precision for WordNet was also used in BabelNet project [2].

Figure 1 demonstrates the precision of our WordNet with
respect to size of the WordNet. We can observe that by
increasing the size of the WordNet, precision decreases which
is expected. By selecting the first 10,000 word-synset pairs we
have a WordNet of precision 90.46%. This is an improvement
in comparison with the state-of-the-art automatically built
Persian WordNet which gained precision of 86.7% with
approximately the same size of the WordNet [4].

D. Dirichlet Prior Parameter Tuning

In this section we evaluate the effect of the Dirichlet
parameter in our proposed model. As we have stated earlier,
dirichlet prior is taken into service to provide the possibility

19 Polibits (47) 2013ISSN 1870-9044

Automatic WordNet Construction Using Markov Chain Monte Carlo

Fig. 2. Precision of Persian WordNet with respect to N , the size of WordNet
after 100 iterations

Fig. 3. Precision of Persian WordNet of size 10,000 with different values of α

of incorporating linguistically appropriate priors. According
to the discussion, a valid assumption about the distribution of
senses of a word is to assume that it is a sparse multinomial
distribution.

Dirichlet distribution with parameters smaller than 1 is
a natural prior over parameters of a sparse multinomial
distribution. So, we assume a K-dimensional Dirichlet
distribution over parameters of multinomial distribution with
K dimensions. For simplicity, we assume that all dirichlet
distributions are symmetric and its parameters are equal to
α. As we prefer sparse multinomial distributions over senses
of a word, we set α < 1 for all Dirichlet prior distributions,
but we also experiment with some large αs to observe the
differences.

In order to observe the effect of the Dirichlet parameter,
Figure 3 presents different values of precision of the WordNet
with a fixed size of 10,000 word-sense pairs for different
values of α. We can observe that the precision of the WordNet
increases with the increase of the Dirichlet parameter. With
optimum value of α, we obtained a precision of 90.46%.

The precision of the automatically built WordNet in this
paper is calculated based on the joined test set containing
annotated gold data, FarsNet, and the set of randomly judged
words by human experts. N top demonstrates the size of the
WordNet, for instance at N = 10000 we are selecting the
10,000 top links of word-sense and regarding them as our
WordNet. It is clear that by expanding the size of the WordNet

Fig. 4. Comparison of precision of Persian WordNet with respect to N for
different number of iterations

Fig. 5. Precision of Persian WordNet with respect to N , the size of WordNet
after 500 iterations

and introducing more senses into our selected links we lose
precision.

E. Number of Iterations

As stated earlier, the number of iterations of the proposed
algorithm has an effect on the final results. In order to observe
the effect of number of iterations on the results, we choose the
approximate optimum value of 0.9 for α and present Figure 4.
It is clear from this figure that the higher number of iterations

acquire roughly the same results as lower number of iterations.
The probabilities of the word-sense links are already converged
with 100 iterations and we can trust our results with 100
iterations.

This figure shows that even with higher number of iterations
we achieve better precision in the first 1000 links, but the value
of precision gradually decreases with respect to lower number
of iterations, hence, with 100 iterations of the algorithm we
achieve better precision after the first 4000 links.

F. Coverage of the WordNet

To evaluate the coverage of our WordNet over all Persian
words we perform two types of assessments: Considering

20Polibits (47) 2013 ISSN 1870-9044

Marzieh Fadaee, Hamidreza Ghader, Heshaam Faili, and Azadeh Shakery

all words appearing in a Persian corpus, Bijankhan, as the
baseline for Persian words, and analyzing the coverage of our
WordNet over FarsNet as the baseline.

Fig. 6. Coverage of FarsNet and our Persian WordNet with respect to N , the
size of WordNet, for α = 0.9 over Persian words that appear in Bijankhan
corpus

Figure 6 shows the number of unique words of the corpus,
covered by our WordNet and also covered by FarsNet. We
can observe that with high precision at the size of 10,000,
our method covers a little less than FarsNet, which is a semi-
automatically built WordNet.

Fig. 7. Coverage of our Persian WordNet with respect to N the size of
WordNet, for α = 0.9 over FarsNet

The coverage of our WordNet in comparison with FarsNet
as the baseline is displayed in Figure 7. In this figure we
perceive two types of coverage: word, and word-synset pair.
The former testifies to the number of words that both our
WordNet and FarsNet have in common, and the latter testifies
to the common sense coverage between two WordNets.

Figure 7 illustrates this experiment. We can note that
by selecting 10,000 links, we cover 2,357 unique words
in FarsNet, and this value only increases slightly by the
increase of the size of our WordNet. However, the number of
word-sense pairs covered in both FarsNet and our WordNet
gradually increases with the increase of the size of our

WordNet, signifying that we are adding new senses to the
existing words with increase of the size and including new
links.

V. CONCLUSION

In this paper, we have presented a method for constructing
a Persian WordNet automatically. This method, which is
based on a Bayesian Inference, uses Gibbs Sampling as a
Markov chain Monte Carlo technique in order to estimate
the probabilities of senses for each word in Persian. The
final WordNet is established by selecting the pairs of
word-synsets with highest probabilities. Our experiments
show that this WordNet has satisfactory coverage over
Persian words and maintains higher precision in comparison
with published automatically-built WordNets in Persian. The
resulting WordNet is freely released and can be downloaded
from our website.1

In this paper, we assumed sparse multinomial distributions
over senses of all words and used the same value for the
parameters of all Dirichlet priors. In reality, the degree
of sparsity of multinomial distributions differs for different
words, and we should take this into account when setting
parameter values of Dirichlet distributions as priors.

Another proposal for future work is to use variational Bayes
as inference method for training the model. This will mitigate
the problem of slow convergence of training step, which is
the result of using Gibbs sampling as the inference algorithm.
This makes the model capable of learning semantic nets with
larger amount of words in relatively shorter time.

ACKNOWLEDGMENTS

We want to acknowledge the support of Research Institute
for ICT. This research was in part supported by a grant from
IPM (No. CS1391-4-19).

REFERENCES

[1] G. A. Miller, “WordNet: A lexical database for English,” Commun.
ACM, vol. 38, pp. 39–41, November 1995. [Online]. Available:
http://doi.acm.org/10.1145/219717.219748

[2] R. Navigli and S. P. Ponzetto, “BabelNet: Building a very large
multilingual semantic network,” in Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, Uppsala,
Sweden, 2010, pp. 216–225.

[3] M. Montazery and H. Faili, “Automatic Persian WordNet construction,”
in Proceedings of the 23rd International Conference on Computational
Linguistics: Posters, ser. COLING ’10. Stroudsburg, PA, USA:
Association for Computational Linguistics, 2010, pp. 846–850.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1944566.1944663

[4] ——, “Unsupervised learning for Persian WordNet construction,” in
RANLP, G. Angelova, K. Bontcheva, R. Mitkov, and N. Nicolov, Eds.
RANLP 2011 Organising Committee, 2011, pp. 302–308.

[5] M. Shamsfard, A. Hesabi, H. Fadaei, N. Mansoory, A. Famian,
S. Bagherbeigi, E. Fekri, M. Monshizadeh, and M. Assi, “Semi
automatic development of FarsNet, the Persian WordNet,” in 5th Global
WordNet Conference (GWA2010), Mumbai, India, 2010.

[6] P. Vossen, Ed., EuroWordNet: A multilingual database with lexical
semantic networks. Norwell, MA, USA: Kluwer Academic Publishers,
1998.

1http://ece.ut.ac.ir/nlp

21 Polibits (47) 2013ISSN 1870-9044

Automatic WordNet Construction Using Markov Chain Monte Carlo

[7] B. Sagot and D. Fišer, “Building a free French WordNet from
multilingual resources,” in OntoLex 2008, Marrackech, Morocco, 2008.

[8] S. Stamou, K. Oflazer, K. Pala, D. Christoudoulakis, D. Cristea, D. Tufis,
S. Koeva, G. Totkov, D. Dutoit, and M. Grigoriadou, “Balkanet: A
multilingual semantic network for the balkan languages,” in Proceedings
of the 1st Global WordNet Association conference, 2002.

[9] O. Bilgin, Ö. Ç. Glu, and K. Oflazer, “Building a Wordnet for Turkish,”
pp. 163–172, 2004.

[10] C. Lee, G. Lee, S. JungYun, and G. Leer, “Automatic WordNet mapping
using word sense disambiguation,” in Proceedings of the Joint SIGDAT
Conference on Empirical Methods in Natural Language Processing and
Very Large Corpora (EMNLP/VLC), 2000.

[11] P. Sathapornrungkij, “Construction of Thai WordNet Lexical Database
from Machine Readable Dictionaries,” English, pp. 87–92, 2005.

[12] R. V. Krejcie and D. W. Morgan, “Determining sample size for
research activities,” Educational and Psychological Measurement,
vol. 30, no. 3, pp. 607–610, 1970. [Online]. Available: http:
//eric.ed.gov/ERICWebPortal/recordDetail?accno=EJ026025

[13] W. Black, S. Elkateb, A. Pease, H. Rodriguez, and M. Alkhalifa,
“Introducing the Arabic WordNet project,” Word Journal Of The
International Linguistic Association, 1998.

[14] H. Rodriguez, D. Farwell, J. Farreres, M. Bertran, M. Alkhalifa, and
A. Marti, Arabic WordNet: Semi-automatic Extensions using Bayesian
Inference. European Language Resources Association (ELRA), 2008,
pp. 1–3. [Online]. Available: http://www.lrec-conf.org/proceedings/
lrec2008/

[15] A. Famian, “Towards Building a WordNet for Persian Adjectives,”
International Journal of Lexicography, no. 2000, pp. 307–308, 2006.

[16] M. Rouhizadeh, M. Shamsfard, and M. Yarmohammadi, “Building a
WordNet for Persian verbs,” in the Proceedings of the Fourth Global
WordNet Conference (GWC ’08). The Fourth Global WordNet
Conference, 2008, pp. 406–412.

[17] F. Keyvan, H. Borjian, M. Kasheff, and C. Fellbaum,
“Developing PersiaNet: The Persian WordNet,” in 3rd
Global wordnet conference. Citeseer, 2007, pp. 315–318.

[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.148.7473\&rep=rep1\&type=pdf

[18] M. Shamsfard, “Towards semi automatic construction of a lexical
ontology for Persian,” in Proceedings of the Sixth International
Conference on Language Resources and Evaluation (LREC’08).
Marrakech, Morocco: European Language Resources Association
(ELRA), may 2008, http://www.lrec-conf.org/proceedings/lrec2008/.

[19] S. Goldwater and T. Griffiths, “A fully Bayesian approach to
unsupervised part-of-speech tagging,” in Proceedings of the 45th Annual
Meeting of the Association of Computational Linguistics. Prague, Czech
Republic: Association for Computational Linguistics, Jun. 2007, pp.
744–751.

[20] M. Johnson, T. Griffiths, and S. Goldwater, “Bayesian inference
for PCFGs via Markov chain Monte Carlo,” in Human Language
Technologies 2007: The Conference of the North American Chapter
of the Association for Computational Linguistics; Proceedings of
the Main Conference. Rochester, New York: Association for
Computational Linguistics, April 2007, pp. 139–146. [Online].
Available: http://www.aclweb.org/anthology-new/N/N07/N07-1018.bib

[21] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images,” in Readings in computer
vision: issues, problems, principles, and paradigms, M. A. Fischler
and O. Firschein, Eds. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1987, pp. 564–584. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=33517.33564

[22] P. Resnik and E. Hardisty, “Gibbs sampling for the uninitiated,”
University of Maryland, Tech. Rep., Oct. 2009.

[23] S. Brody and M. Lapata, “Bayesian word sense induction,” in
Proceedings of the 12th Conference of the European Chapter
of the Association for Computational Linguistics, ser. EACL ’09.
Stroudsburg, PA, USA: Association for Computational Linguistics,
2009, pp. 103–111. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1609067.1609078

[24] M. BijanKhan, “The role of the corpus in writing a grammar: An
introduction to a software,” Iranian Journal of Linguistics, vol. 19, 2004.

22Polibits (47) 2013 ISSN 1870-9044

Marzieh Fadaee, Hamidreza Ghader, Heshaam Faili, and Azadeh Shakery

Exploration on Effectiveness and Efficiency of
Similar Sentence Matching

Yanhui Gu, Zhenglu Yang, Miyuki Nakano, and Masaru Kitsuregawa

Abstract—Similar sentence matching is an essential issue for
many applications, such as text summarization, image extraction,
social media retrieval, question-answer model, and so on. A
number of studies have investigated this issue in recent years.
Most of such techniques focus on effectiveness issues but only
a few focus on efficiency issues. In this paper, we address both
effectiveness and efficiency in the sentence similarity matching.
For a given sentence collection, we determine how to effectively
and efficiently identify the top-k semantically similar sentences to
a query. To achieve this goal, we first study several representative
sentence similarity measurement strategies, based on which we
deliberately choose the optimal ones through cross-validation
and dynamically weight tuning. The experimental evaluation
demonstrates the effectiveness of our strategy. Moreover, from the
efficiency aspect, we introduce several optimization techniques
to improve the performance of the similarity computation. The
trade-off between the effectiveness and efficiency is further
explored by conducting extensive experiments.

Index Terms—String matching, information retrieval, natural
language processing.

I. INTRODUCTION

S IMILAR sentence matching is an essential issue because
it is the basis of many applications, such as as text

summarization, image extraction, social media retrieval,
question-answer model, and so on.

Traditional techniques for measuring the similarity between
documents (long texts), e.g., TF-IDF, have been introduced
based on an intuitive assumption that a large number of
common words exist in similar documents. However, these
methods are inappropriate for measuring similarities between
sentences because in short texts common words are few or
even nonexistent [1]–[3]. To address this issue, numerous
strategies have been proposed to measure the similarity
between sentences. These strategies can be classified into four
categories: (1) knowledge-based [2], [3]; (2) string similarity
based [4], [5]; (3) corpus-based [6], [7]; and (4) hybrid
strategies [1], [6].

As far as we know, the most comprehensive framework
for sentence similarity calculation is introduced in [6].
The authors integrate several representative string-based and
corpus-based (i.e., BNC) similarities. It is well known that
WordNet and Wiki are important semantic resources and have

Manuscript received on December 15, 2012; accepted for publication on
January 11, 2013.

All authors are with the Institute of Industrial Science, University
of Tokyo, Komaba 4-6-1, Meguro, Tokyo, 153-8505, Japan (e-mail:
{guyanhui,yangzl,miyuki,kitsure}@tkl.iis.u-tokyo.ac.jp).

been extensively studied on the measurement of semantic
similarities [1], [2], [8]. An intuitive idea is to incorporate
these semantic resources (i.e., WordNet and Wiki) into the
general framework (i.e., [6]) to improve the effectiveness.
In the first part of this paper, we thoroughly explore the
idea, that evaluates the effect of different measurements on
calculating sentence similarities. We believe that this is the first
work which comprehensively studies the sentence similarity
measurement by using most semantic resources.

In addition to the effectiveness aspect, efficiently searching
similar sentences from a large number of data has become
an important issue [9], [10] in the literature. From a given
sentence collection, such queries aim to identify sentences that
are most semantically similar to a given one. A naive approach
can employ the following procedure: we first measure the
semantic similarity score between the query and each sentence
in the data collection using state-of-the-art techniques. The
sentences are then sorted based on the score. Finally, the top-k
sentences are identified and returned to the user. However, as
the data collection size increases, the scale of the problem
likewise increases, thus rendering state-of-the-art techniques
impractical [10], [11], which highlights the importance of
the efficiency issue. Several works explored optimization
strategies for similarity measurement. In [12], the author
addressed the efficiency issue by optimizing the string
similarity, WordNet similarity and semantic similarity of
words. An efficient method for the extraction of similar
sentences was proposed in [9], where different strategies were
combined by applying the threshold algorithm. In this paper,
taking into account the new similarities (i.e., WordNet and
Wiki), we introduce the corresponding optimization strategies
to improve the efficiency. The trade-off between effectiveness
and efficiency is also studied in this paper.

The contributions of this paper are as follows:

– We introduce several representative similarity mea-
surement strategies and evaluate the effectiveness of
each strategy individually as well as that of different
combinations.

– We propose a dynamic weight tuning strategy to improve
the effectiveness of the similarity measure. In addition,
we also study the weight setting of the combination of
different similarity strategies.

– We introduce optimization strategies for the new semantic
resources (i.e., WordNet and Wiki) to improve the
efficiency of sentence similarity matching.

23 Polibits (47) 2013ISSN 1870-9044; pp. 23–29

– We conduct comprehensive experiments to evaluate the
performance of the proposed strategies. The results
show that the proposed strategies outperform the
state-of-the-art method. We also illustrate the trade-off
between effectiveness and efficiency.

II. PRELIMINARIES

To measure the similarity sim(Q,P) between two sentences
Q and P , we apply state-of-the art strategies by assembling
multiple similarity metric features [1], [6]. Given that we
cannot evaluate all the similarity measurement strategies in
this paper, we select several representative features based on
the framework presented in [6]. Notably, considering that a
sentence comprises a set of words, the similarity score between
two sentences denotes the overall scores of all word pairs,
the components of which belong to each sentence. See [6]
for detail on computing sentence similarity based on word
similarity.

A. Similarity Measurement Strategies

1) String Similarity: String similarity measures the
difference in syntax between strings. An intuitive idea is that
two strings are similar to each other if they have adequate
common subsequences (e.g., LCS [13]). String similarity
measurement strategies, including edit-distance, hamming
distance and so on. We focus on three representative string
similarity measurement strategies introduced in [6], namely,
NLCS, NMCLCS1 and NMCLCSn1.

2) Corpus-based Similarity: The corpus-based similarity
measurement strategy recognizes the degree of similarity
between words using large corpora, e.g., BNC, Wikipedia,
Web and so on. Corpus-based similarity measurement
strategies are of several types: PMI-IR, LSA, HAL, and so
on. In this paper, we apply the Second Order Co-occurrence
PMI (SOC-PMI) [6], [14] which employs PMI-IR to consider
important neighbor words in a context window of the
two target words from a large corpus. They use PMI-IR
to calculate the similarities between word pairs (including
neighbor words). High PMI scores are then aggregated to
obtain the final SOC-PMI score.

3) Common Word Order Similarity: Common word
order similarity measures how similar the order of the
common-words is between two sentences, as either the
same order, almost the same order, or very different order.
Although [15] indicates that syntactic information is less
important during the semantic processing of sentences, we
incorporate this similarity measurement strategy to test how
much order similarity affects the whole sentence similarity.
See [1], [6] for detail.

1NLCS: Normalized Longest Common Substring; NMCLCS1: Normalized
Maximal Consecutive LCS starting at character 1; NMCLCSn: Normalized
Maximal Consecutive LCS starting at any character n. See [6] for detail.

B. General Framework for Measuring Sentence Similarity

To measure the overall similarity between two sentences, a
general framework is presented by incorporating all similarity
measurement strategies. To the best of our knowledge, [6]
presented the most comprehensive approach that incorporates
representative similarity metrics. They construct a similarity
matrix and recursively extract representative words (maximal-
valued element) which are then aggregated to obtain the
similarity between two sentence.

III. EFFECTIVENESS IMPROVEMENT WITH ADDITIONAL
SEMANTIC RESOURCES

Hybrid approaches incorporate different similarity strate-
gies, such as string similarity, knowledge-based similarity,
corpus-based similarity, etc. It is well known that WordNet
and Wiki are two representative semantic resources and have
been extensively studied on the measurement of semantic
similarities [1], [2], [8]. Based on the general framework
which is introduced in [6], in this paper we propose to
take into account the additional important semantic resources
(i.e., Wordnet and Wiki), to improve the effectiveness of
the sentence similarity measurement. We explore the effect
of different similarity metrics by using equal-weight setting
(Section III), cross-validation (Section IV), and dynamic
weight tuning (Section V). Efficiency optimization on sentence
similarity matching is introduced in Section VI.

A. Two Additional Semantic Resources

1) WordNet-based Similarity Strategy: A word thesauri
such as WordNet, constitutes the knowledge base for
text-related research. An intuitive idea to determine whether
two words are semantically similar to each other is by
finding if the shortest path between them is small. This
edge-counting approach has been extended by incorporating
additional features in the knowledge base, such as depth,
information content, or semantic density. We select one
representative metric proposed in [16], that is, Leacock and
Chodorow strategy. We take two words wi,wj , the similarity
of which is determined as follows:

Simlch(wi, wj) = −ln length(wi, wj)
2 ∗D

,

where length(wi, wj) is the length of the shortest path
between two concepts (by applying node-counting strategy).
D is the maximum depth of the taxonomy.

2) Wiki-based Similarity Strategy: Unlike taxonomy-based
methods, such as the WordNet-based strategy, Wiki-based
similarity cannot employ a new entity. An representative
strategy, ESA [8], which applies the Wiki encyclopedia as
a knowledge base to map text into Wiki-based concepts.
In this approach, each Wiki concept is represented as an
attribute vector of words that occur in the corresponding
article. Entries of these vectors are assigned weights by
using the TF-IDF scheme which quantifies the strength of

24Polibits (47) 2013 ISSN 1870-9044

Yanhui Gu, Zhenglu Yang, Miyuki Nakano, and Masaru Kitsuregawa

association between words and Wiki concepts. ESA measures
similarity between sentences (arbitrary length) by aggregating
each word distribution on concepts, i.e., sentence is a vector
based on concepts with weight of each concept ci calculated
as:

∑
wi∈T vi · kj , where vi is TF-IDF weight of wi and kj

quantifies the strength of association of word wi with Wiki
concept cj .

B. Experimental Evaluation

In this section, we first evaluate the single strategy and
then the different combination of similarity strategies. Besides
SimBaseline (baseline is the combination of string similarity
and BNC-based semantic similarity), we incorporate two
different strategies, such as SimWordNet and SimWiki into
the framework with equal weight. We apply benchmark
dataset (Miller-Charles’ dataset) which has also been used
in [1] to evaluate the effectiveness in this and the following
sections. Figure 1 illustrates the results of the correlation
coefficient with human ratings.

Different Strategies

0.78186
0.80125

0.84199

0.60707

0.69327

0.78901

0.86070

0.80262

0.73333

0.85131

0.75775

Fig. 1. Results of different strategies combination with equal weight

C. Result Explanation

The figure shows that all single similarity strategies are
worse than the baseline strategy. Wiki is a good semantic
resource because the combination of Wiki achieve better
results than others but WordNet is not good on this dataset.
However, the combination strategies are better than single
similarity strategies but still falls short of the baseline strategy.
Given their equal weights, all similarity strategies have the
same proportion of similarity aggregation, that is, the weight
is static and set arbitrarily.

IV. EFFECTIVENESS IMPROVEMENT WITH
CROSS-VALIDATION

Considering that the weight in Section III is set to be
equal, in this section, we test each possible weight of the
combination strategy. Obtaining the optimal values of these
weights is certainly an important issue. We argue that this work
is orthogonal to the existing effectiveness oriented studies
in a complementary manner. We try to achieve the best
effectiveness by testing each possible weight.

A. Cross-Validation

Cross-validation strategy can test all the possible weight
combination results with human ratings. In this paper, we
apply a 10-fold cross-validation strategy and study what
weight can achieve the best effectiveness.

B. Experimental Evaluation

We conduct experiments on the benchmark dataset. Table I
shows that, by applying cross-validation, we can obtain better
results from combination strategies. From Table I, we observe
that the WordNet strategy still has extremely low effectiveness.
In addition, combination strategies that contain the WordNet
strategy are also outperformed by other strategies.

C. Result Explanation

The experiment results show that setting weight arbitrarily
and equally is improper for similarity measurement, especially
in combination strategies. We can achieve better results by
using cross-validation strategy. However, from the experiment
results of Section III and Section IV, we can see that, the
results of combination of WordNet are still low.

V. EFFECTIVENESS IMPROVEMENT WITH DYNAMIC
WEIGHT TUNING

From Section IV we can see that, WordNet is not a good
semantic resource when measuring the semantic similarity
under the benchmark dataset. Because of the omission of two
word pairs in WordNet, similarity score of these words are “0”
which affect the whole similarities. In this section, we reduce
the weight of these words which are not included in WordNet
by dynamically weight tuning.

A. Dynamic Weight Tuning

To address this issue, one possible solution is to remove
these words when calculating the similarity score. However,
such a strategy may affect the similarity score of other
strategies because of the reduction in the number of words.
Another solution is by dynamically tuning the combination
weight. We take the String + WordNet strategy as an
example. If the similarity score of some word pairs are “0”,
but this value holds a rather large weight, which can reduce
the final similarity score. We propose a dynamic combination
weight tuning strategy to address this issue. We denote two
sentences Q and P , which have m and n words, respectively.
A total of γ words are not included in WordNet of sentences P
and Q. Based on the strategy in [6], at least γ ∗min(m,n) or
at most γ ∗max(m,n) word pairs are “0” (we apply average
value (m+n)

2 ·γ). Therefore, we mitigate the effect of WordNet
by tuning the weight to 1

k · (1 − m+n
2mn · γ), where k is the

number of combination strategies. So, SimString+WordNet

= 1
k · 2mn(k−1)+(m+n)·γ

2mn · SimString+ 1
k · 2mn−(m+n)·γ

2mn · γ ·
SimWordNet, where k = 2 in this case.

25 Polibits (47) 2013ISSN 1870-9044

Exploration on Effectiveness and Efficiency of Similar Sentence Matching

TABLE I
CORRELATION COEFFICIENT ON COMBINATION WITH CROSS-VALIDATION

Strategy Correlation Weight
String Semantic WordNet Wiki

Baseline+WordNet 0.82019 0.377 0.531 0.092 –
Baseline+Wiki 0.86073 0.470 0.210 – 0.320
Baseline+WordNet+Wiki 0.81002 0.406 0.301 0.072 0.221
String+WordNet 0.77815 0.699 – 0.301 –
String+Wiki 0.86132 0.579 – – 0.421
String+WordNet+Wiki 0.80126 0.470 – 0.110 0.420

Note: Baseline strategy involving string and semantic strategy.

B. Experimental Evaluation

We apply this strategy and conduct experiments on the
benchmark dataset. Table II shows the results by dynamically
tuning the weight.

Table II shows that, we obtain better correlation coefficient
by dynamically tuning the weight. For String+WordNet+
Wiki, we obtain a better result than Baseline +Wiki and
String +Wiki.

C. Result Explanation

From the experiment results, we can see that dynamically
tuning the weight of each similarity strategy is a possible
solution to improve the effectiveness. However, all the weight
tuning is conducted on the benchmark dataset. The weight
may be changed if we apply the strategy to another dataset.
Supervised learning techniques could solve such an issue but
are out of the scope of this paper.

Common word order is an important strategy in similarity
measurement. To evaluate the effect of common word order
similarity, we incorporate such similarity strategy into the
framework. We incorporate common word order similarity into
baseline strategy. Experiments conducted on the benchmark
dataset illustrated that only 19 of 30 pairs have common
words. Of all these 19 pairs, 15 pairs have exactly the same
order (including 10 pairs which have only “1” common word).
Such similarity only affects 4 pairs. We set weight of common
word order similarity from 0 to 0.5 with the granularity “0.01”
and we obtain the best correlation coefficient “0.81972” at 0.01
which is less than baseline.

VI. EFFICIENCY IMPROVEMENT

Searching for similar sentences from a large amount of
data has become an important issue [9], [17] in the literature.
From a given sentence collection, such queries aim to identify
sentences that are most semantically similar to a given one. A
naive approach could be: we first measure the similarity score
between the query and each sentence in the data collection
using state-of-the-art techniques [1], [2], [6]. The sentences
are then sorted based on a score. Finally, the top-k statements
are identified and returned to the user. However, as the
size of the collected data, testing each candidate sentence
becomes time consuming. In [9], the author proposed a
solution which optimized state-of-the-art techniques to retrieve

top-k sentences. Techniques that optimize string similarity
and semantic similarity is proposed. From the analysis in
Section V, we select a best similarity combination strategy that
has the best effectiveness. We select one representative strategy
which achieves best performance, that is, string, WordNet
and Wiki, with the weight “0.420”, “0.210” and “0.370”,
respectively.

A. Optimization on WordNet

We apply the Leacock and Chodorow strategy as a WordNet
evaluator which is an efficient technique [12].

Lemma 1 (Ordering in WordNet): Let Q be the query. Let
P and S be two candidates that exist in the same taxonomy
of Q, that is, TP and TQ. The shortest path between Q and
P (or S) is LP in TP (or LS in TS). The maximum depth of
TP is DP (or DS of TS). P is more similar to Q compared
with S. Thus, we have DP

LP
> DS

LS
.

The lemma tells us that the similarity ordering between
candidates in WordNet depends on the integration of the
shortest path and the maximum depth of the taxonomy. For
example, father is in both a noun taxonomy (i.e., D

L = 19)
and a verb taxonomy (i.e., D

L = 14)2. Thus, father in a
noun taxonomy should be accessed before that in a verb
taxonomy. Sequentially we access the synonyms set between
two taxonomies successively based on the value of D

L . Based
on this lemma, we index all the candidates together with their
neighbors and maximum taxonomy depth. We sequentially
access nodes based on Lemma 1 and obtain the top-k results
in a progressive manner.

B. Optimization on Wiki

ESA measures the similarity between sentences (arbitrary
length) by aggregating each word distribution on concepts,
that is, a sentence is a vector based on concepts with the
weight of each concept ci calculated as:

∑
wi∈T vi ·kj , where

vi is TF-IDF weight of wi and kj quantifies the strength of
association of word wi with Wiki concept cj . The traditional
approach has to test each candidate in the data collection.
In our optimized strategy, we first calculate all the similarity
scores between each word in Wiki and between sentences in

2The maximum depths of the two taxonomies are 19 for noun and 14 for
verb by querying WordNet during preprocessing.

26Polibits (47) 2013 ISSN 1870-9044

Yanhui Gu, Zhenglu Yang, Miyuki Nakano, and Masaru Kitsuregawa

TABLE II
CORRELATION COEFFICIENT ON DYNAMICALLY WEIGHT TUNING

Strategy Correlation Weight
String Semantic WordNet Wiki

Baseline+WordNet 0.83033 0.408 0.375 0.217 –
Baseline+Wiki 0.86073 0.470 0.210 – 0.320
Baseline+WordNet+Wiki 0.84752 0.334 0.314 0.157 0.195
String+WordNet 0.79378 0.649 – 0.351 –
String+Wiki 0.86132 0.579 – – 0.421
String+WordNet+Wiki 0.86201 0.420 – 0.210 0.370

the data collection to obtain a set of lists during preprocessing
which is illustrated in Figure 2. Then we build a weighted
inverted list, here each list indicates a word with sorted
corresponding sentences based on the similarity score. Given
a query sentence Q, each word in Q corresponds a list of
sentences. Therefore, we apply the threshold algorithm [18]
with TF-IDF weight to retrieve the top-k sentences. This
manner accesses a small number of components of the data
collection without need to test every candidate sentence.

Weighted inverted list

...

S3 S7 S5 S9

S2 S9 S6 S8

S6 S3 S4 S2

W1

W2

Wn

...

...

...

...

S2

S9

S8

S3

S6

S4

S8

S2

S6

...

query: w2 w5 w9

w2 w5 w9

Data Collection

Ranked list

Preprocessing

Online query

< >weight vector

vw2 v
w5

v
w9

vw2

vw2

v
w9

v
w5

Fig. 2. Optimization on Wiki based strategy

C. Assembling Similarity Features
We introduce an efficient assembling approach to accelerate

the process of searching for top-k similar sentences [18].
In [9], the author illustrated the method by using a concrete
example. In this paper, we apply three different similarity
measurement strategies, String, WordNet and Wiki. We
apply the threshold based strategy in assembling different
similarities as well as in assembling words into a sentence
to obtain the top elements. Given the page limitation, we do
not include detailed explanations here.

D. Experimental Evaluation on Efficiency
To evaluate the efficiency, we conduct extensive experiments

on two large real datasets: BNC dataset (extracted from British

National Corpus); MSC dataset (extracted from Microsoft
Research Paraphrase Corpus).3 Table III shows the statistics of
these two datasets. (Statistics after preprocessing is italicized.)

TABLE III
DATASET STATISTICS

BNC MSC
Avg. sentence length 11.72 7.19 15.23 9.31
Min. sentence length 3 2 5 3
Max. sentence length 107 38 29 17
Max word length 17 17 13 13

1) Evaluation on Effect of Data Collection Size: Figure 3
shows the top-5 results after 10 randomly selected queries. We
can see that our proposed optimized strategy is significantly
faster than the baseline strategy for both datasets because our
strategy substantially reduces the number of candidates tested.
As the size of collected data increases, the query time of our
proposed strategy also increases linearly and proportionately
well.

(a) BNC dataset

(b) MSC dataset

Fig. 3. Effect of data collection size

2) Evaluation on Effect of k value: In addition, we also
verify the effect of k value. We randomly chose 10 queries

31k, 5k, 10k, 20k sentences are extracted from BNC and 10%, 20%, 50%,
100% of MSC are divided. After removing the duplicated sentences in MSC,
11,212 sentences are remained.

27 Polibits (47) 2013ISSN 1870-9044

Exploration on Effectiveness and Efficiency of Similar Sentence Matching

from both datasets and fix the data size to be 5k for BNC and
the whole size for MSC. Figure 4 shows that the baseline has
to access all candidate sentences, such that, the query time
is the same for all the situations. For our proposed method,
the top-1 can be returned almost instantly. The query time
increases when k increases because more candidates need to
be accessed.

(a) BNC dataset

(b) MSC dataset

Fig. 4. Effect of k-value

VII. TRADE-OFF BETWEEN EFFECTIVENESS AND
EFFICIENCY

In Section VI-D, we prove that, our proposed optimization
strategy can significantly reduce the execution time when
retrieving top-k values. However, effectiveness and efficiency
require a trade-off. We conducted experiments on the
benchmark dataset by using Baseline and Baseline +
WordNet+Wiki strategies to retrieve top-5 results. Table IV
tells us combining several strategies can achieve high precision
but may be time consuming. Therefore, designing an effective
similar sentence matching framework with high efficiency
remains a challenge.

TABLE IV
TRADE-OFF BETWEEN EFFECTIVENESS AND EFFICIENCY

Strategy Effectiveness Efficiency
Correlation Execution Time(Sec.)

Baseline(String+Semantic[BNC]) 0.84019 2.90
Baseline+WordNet+Wiki 0.86201 3.32

VIII. RELATED WORK

Measuring similarity between long texts has been
extensively studied [7], [19]. However, only a few of them can
be directly applied to sentence similarity measurement [1], [2],
[6]. Based on the different strategies applied, existing works

on similarity measurement between sentences can be classified
into several categories:

String similarity based strategy. Numerous strategies
estimate the string similarity between two texts [20]. One
representative q-gram based strategy calculates the edit
distance between words. In [21] the authors proposed several
strategies, including adaptive q-gram selection, for the efficient
retrieval of the top-k results. In [22], the authors introduced
deliberated techniques, e.g., divide-skip-merge, to extract
similar strings.

Knowledge-based strategy. Knowledge base (sometimes
called word thesauri), e.g., WordNet, contains the labeled (or
semi-labeled) data for text related research tasks. In [3],
they firstly create semantic networks from word thesauri and
then measure the relatedness between words based on these
semantic networks. The hierarchy property of WordNet has
been explored in [1]. The word pair similarity is estimated
from the hierarchy based on a node counting strategy, i.e.,
calculating the number of nodes between the target words.

Corpus-based strategy. Statistics information of large
corpus can be used to calculate the similarity between two
words or texts. Some well known methods in corpus-based
similarity are LSA (Latent Semantic Analysis) and HAL
(Hyperspace Analogues to Language), etc. One representative
strategy ESA (Explicit Semantic Analysis) [8] which applies
machine learning techniques to explicitly represent the
meaning of any text as a weighted vector of Wiki-based
concepts.

Hybrid strategy. To tackle the drawback of single strategy,
the hybrid strategy was proposed [1], [6]. The combination
of knowledge based strategy and word order based strategy
was proposed in [1]. In [6], the author applies string based,
common word order based, and corpus based strategies to
measure the similarity between sentences.

Currently, several works [9], [12] explore efficiency issue to
optimize state-of-the-art similarity strategy. Efficient extraction
on semantic similar words is presented in [12] by optimizing
string-based, WordNet-based and corpus-based similarity
strategies. In [9], the authors address efficiency issue to
efficiently search for semantic similar sentences on three string
similarity strategies and corpus-based strategy.

IX. CONCLUSION

In this paper, we have studied both effectiveness and
efficiency aspect in the sentence similarity matching. The
optimal strategies have been proposed through cross-validation
and dynamically weight tuning. We also introduced several
efficient techniques to improve the performance of the
similarity computation. The trade-off between effectiveness
and efficiency is also explored by conducting extensive
experiments.

REFERENCES

[1] Y. Li, D. McLean, Z. Bandar, J. O’Shea, and K. A. Crockett,
“Sentence similarity based on semantic nets and corpus statistics.” IEEE

28Polibits (47) 2013 ISSN 1870-9044

Yanhui Gu, Zhenglu Yang, Miyuki Nakano, and Masaru Kitsuregawa

Transactions on Knowledge and Data Engineering, vol. 18, no. 8, pp.
1138–1150, 2006.

[2] R. Mihalcea, C. Corley, and C. Strapparava, “Corpus-based and
knowledge-based measures of text semantic similarity,” in Proceedings
of the AAAI Conference on Artificial Intelligence, ser. AAAI’06, 2006,
pp. 775–780.

[3] G. Tsatsaronis, I. Varlamis, and M. Vazirgiannis, “Text relatedness based
on a word thesaurus.” Journal of Artificial Intelligence Research, vol. 37,
pp. 1–39, 2010.

[4] W. W. Cohen, “Integration of heterogeneous databases without common
domains using queries based on textual similarity,” in Proceedings of
the ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD’98, 1998, pp. 201–212.

[5] G. Navarro, “A guided tour to approximate string matching,” ACM
Computing Surveys, vol. 33, no. 1, pp. 31–88, 2001.

[6] A. Islam and D. Inkpen, “Semantic text similarity using corpus-based
word similarity and string similarity,” ACM Transactions on Knowledge
Discovery from Data, vol. 2, no. 2, pp. 1–25, 2008.

[7] T. K. Landauer and S. T. Dumais, “A solution to Plato’s problem:
The latent semantic analysis theory of the acquisition, induction, and
representation of knowledge,” Psychological Review, vol. 104, pp.
211–240, 1997.

[8] E. Gabrilovich and S. Markovitch, “Computing semantic relatedness
using wikipedia-based explicit semantic analysis,” in Proceedings of the
International Joint Conference on Artifical Intelligence, ser. IJCAI’07,
2007, pp. 1606–1611.

[9] Y. Gu, Z. Yang, M. Nakano, and M. Kitsuregawa, “Towards efficient
similar sentences extraction,” in Proceedings of Intelligent Data
Engineering and Automated Learning, ser. IDEAL’12, 2012, pp.
270–277.

[10] P. Pantel, E. Crestan, A. Borkovsky, A.-M. Popescu, and V. Vyas,
“Web-scale distributional similarity and entity set expansion.” in
Proceedings of the Conference on Empirical Methods in Natural
Language Processing, ser. EMNLP’09, 2009, pp. 938–947.

[11] A. Goyal and H. Daumé, III, “Approximate scalable bounded space
sketch for large data nlp,” in Proceedings of the Conference on Empirical
Methods in Natural Language Processing, ser. EMNLP’11, 2011, pp.
250–261.

[12] Z. Yang and M. Kitsuregawa, “Efficient searching top-k semantic
similar words,” in Proceedings of the International Joint Conference
on Artificial Intelligence, ser. IJCAI’11, 2011, pp. 2373–2378.

[13] D. S. Hirschberg, “A linear space algorithm for computing maximal
common subsequences,” Communications of ACM, vol. 18, no. 6, pp.
341–343, 1975.

[14] A. Islam and D. Inkpen, “Second order co-occurrence pmi for
determining the semantic similarity of words,” in Proceedings of the
International Conference on Language Resources and Evaluation, ser.
LREC’06, 2006, pp. 1033–1038.

[15] P. Wiemer-Hastings, “Adding syntactic information to lsa,” in
Proceedings of the Annual Conference of the Cognitive Science Society,
ser. COGSCI’00, 2000, pp. 989–993.

[16] C. Leacock and M. Chodorow, “Combining local context and wordnet
similarity for word sense identification,” in WordNet: An Electronic
Lexical Database. In C. Fellbaum (Ed.), MIT Press, 1998, pp. 305–332.

[17] M. B. Blake, L. Cabral, B. König-Ries, U. Küster, and D. Martin,
Semantic Web Services: Advancement through Evaluation. Springer,
2012.

[18] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms
for middleware,” in Proceedings of the ACM SIGMOD symposium on
Principles of Database Systems, ser. PODS’01, 2001, pp. 102–113.

[19] V. Hatzivassiloglou, J. L. Klavans, and E. Eskin, “Detecting text
similarity over short passages: Exploring linguistic feature combinations
via machine learning,” in Proceedings of the Joint SIGDAT Conference
on Empirical Methods in Natural Language Processing and Very Large
Corpora, ser. EMNLP/VLC’99, 1999, pp. 203–212.

[20] V. Levenshtein, “Binary codes capable of correcting deletions, insertions,
and reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710,
1966.

[21] Z. Yang, J. Yu, and M. Kitsuregawa, “Fast algorithms for top-k
approximate string matching,” in Proceedings of the AAAI Conference
on Artificial Intelligence, ser. AAAI’10, 2010, pp. 1467–1473.

[22] S. Sarawagi and A. Kirpal, “Efficient set joins on similarity predicates,”
in Proceedings of the ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD’04, 2004, pp. 743–754.

29 Polibits (47) 2013ISSN 1870-9044

Exploration on Effectiveness and Efficiency of Similar Sentence Matching

Abstract—As resources become more and more available on
the Web, so the difficulties associated with finding the desired
information increase. Intelligent agents can assist users in this
task since they can search, filter and organize information on
behalf of their users. Web document clustering techniques can
also help users to find pages that meet their information
requirements. This paper presents a personalized web document
clustering called TopicSearch. TopicSearch introduces a novel
inverse document frequency function to improve the query
expansion process, a new memetic algorithm for web document
clustering, and frequent phrases approach for defining cluster
labels. Each user query is handled by an agent who coordinates
several tasks including query expansion, search results
acquisition, preprocessing of search results, cluster construction
and labeling, and visualization. These tasks are performed by
specialized agents whose execution can be parallelized in certain
instances. The model was successfully tested on fifty DMOZ
datasets. The results demonstrated improved precision and recall
over traditional algorithms (k-means, Bisecting k-means, STC y
Lingo). In addition, the presented model was evaluated by a
group of twenty users with 90% being in favor of the model.

Index Terms—Web document clustering, intelligent agents,
query expansion, WordNet, memetic algorithms, user profile.

I. INTRODUCTION
N recent years, web document clustering has become a very
interesting research area among academic and scientific

communities involved in information retrieval (IR) and web
search [1]. Web document clustering systems seek to increase
the coverage (amount) of documents presented for the user to
review, while reducing the time spent in reviewing
documents [2]. In IR, these web document clustering systems
are called web clustering engines. Among the most prominent
ones are Carrot (www.carrot2.org), SnakeT (snaket.di.unipi.
it), Yippy (yippy.com, originally named as Vivisimo and then

Manuscript received on March 13, 2013; accepted for publication on May
23, 2013.

Carlos Cobos and Martha Mendoza are with the University of Cauca,
Colombia (e-mail: {ccobos,mmendoza}@unicauca.edu.co).

Elizabeth León is with the Universidad Nacional de Colombia, Colombia
(e-mail: eleonguz@unal.edu.co).

Milos Manic is with the University of Idaho at Idaho Falls, USA (e-mail:
misko@uidaho.edu)

Enrique Herrera-Viedma is with University of Granada, Spain (e-mail:
viedma@decsai.ugr.es)

as Clusty), iBoogie (www.iboogie.com), and KeySRC
(keysrc.fub.it) [3]. Such systems usually consist of four main
components: search results acquisition, preprocessing of
input, cluster construction and labeling, and visualization of
resulting clusters [1] (see Fig 1).

The search results acquisition component begins with a
query defined by the user. Based on this query, a document
search is conducted in diverse data sources, in this case in the
traditional web search engines such as Google, Yahoo! and
Bing. In general, web clustering engines work as meta search
engines and collect between 50 to 200 results from traditional
search engines. These results contain as a minimum a URL, a
snippet and a title [1].

The preprocessing of search results comes next. This
component converts each of the search results (as snippets)
into a sequence of words, phrases, strings or general attributes
or characteristics, which are then used by the clustering
algorithm. There are a number of tasks performed on the
search results, including: removing special characters and
accents, the conversion of the string to lowercase, removing
stop words, stemming of the words and the control of terms or
concepts allowed by a vocabulary [1].

Once the preprocessing is finished, cluster construction
and labeling is begun. This stage makes use of three types of
algorithm [1]: data-centric, description-aware and description-
centric. Each of these builds clusters of documents and
assigns a label to the groups.

Data-centric algorithms are the algorithms traditionally
used for data clustering (partitional, hierarchical, density-
based, etc.) [1, 4-10]. They look for a solution in data
clustering, but lack in their capabilities presentation of the
labels and in providing explanations of the groups obtained.
These algorithms address the problem of web document
clustering as merely another data clustering problem.

Description-aware algorithms put more emphasis on one
specific feature of the clustering process. For example, they
might put a priority on the quality of the labeling of groups
and as such achieve results that are more easily interpreted by
the user. The quality of these algorithms however deteriorates
during the cluster creation process. An example of this type of
algorithm is Suffix Tree Clustering (STC) [8], which
incrementally creates labels easily understood by users, based
on common phrases that appear in the documents.

TopicSearch—Personalized Web Clustering
Engine Using Semantic Query Expansion,

Memetic Algorithms and Intelligent Agents
Carlos Cobos, Martha Mendoza, Elizabeth León, Milos Manic, and Enrique Herrera-Viedma

I

31 Polibits (47) 2013ISSN 1870-9044; pp. 31–45

Fig 1.The components of a web clustering engine (adapted from [1])

Description-centric algorithms [1, 7, 11-15] are designed
specifically for web document clustering, seeking a balance
between the quality of clusters and the description (labeling)
of clusters. An example of such algorithms is Lingo [11]
(implemented by www.carrot2.org), which makes use of
Singular Value Decomposition (SVD) to find the best
relationships between terms, but groups the documents based
on the most frequent phrases in the document collection.

Finally, in the visualization step, the system displays the
results to the user in folders organized hierarchically. Each
folder seeks to have a label or title that represents well the
documents it contains and that is easily identified by the user.
As such, the user simply scans the folders that are actually
related to their specific needs. The presentation folder tree has
been adopted by various systems such as Carrot2, Yippy,
SnakeT, and KeySRC, because the folder metaphor is already
familiar to computer users. Other systems such as Grokker
and Kart004 use a different display scheme based on
graphs [1].

In order to obtain satisfactory results in web document
clustering, the algorithms must meet the following specific
requirements [1, 8]: Automatically define the number of
clusters that are going to be created; generate relevant clusters
for the user and assign these documents to appropriate
clusters; define labels or names for the clusters that are easily
understood by users; handle overlapping clusters (the
document can belong to more than one cluster); reduce the
high dimensionality of document collections; handle the
processing time i.e. less than or equal to 2.0 seconds; and
handle the noise frequently found in documents.

Another important aspect of web document clustering
algorithms is the document representation model. The most
widely used models are [16]: Vector space model [2, 4],
Latent Semantic Indexing (LSI) [2, 11], Ontology-based
model [7, 17], N-gram [8], Phrase-based model [8], and
Frequent Word (Term) Sets model [7, 18].

In Vector space model (VSM), the documents are designed

as bags of words. Document collection is represented by a
matrix of D-terms by N-documents. This matrix is commonly
called Term by Document Matrix (TDM). In TDM, each
document is represented by a vector of normalized frequency
term by document inverse frequency for that term, in what is
known as the TF-IDF value. In VSM, the cosine similarity is
used for measuring the degree of similarity between two
documents or between a document and the user's query. In
VSM as in most of the representation models, a process of
stop word removal and stemming [2] should be done before
re-presenting the document. Stop word removal refers to the
removal of very common words (like articles and
prepositions, so can yield over 40% reduction on TDM matrix
dimensionality), while stemming refers to the reduction of
words to their canonical stem or root form.

The two predominant problems with existing web
clustering are inconsistencies in cluster content and
inconsistencies in cluster description [1]. The first problem
refers to the content of a cluster that does not always
correspond to the label. Also, the navigation through the
cluster hierarchies does not necessarily lead to more specific
results. The second problem refers to the need for more
expressive descriptions of the clusters (cluster labels are
confusing).This is the main motivation of the present work, in
which a personalized web clustering engine modeled by
agents is put forward. This model is developed to work on-
line and off-line, which means that users can define the
processing time (for example, it can be fixed at a value of less
than two seconds to work on-line) of agents in the entire
process of search, clustering and visualization. To the best of
our knowledge, this research is the first to integrate
synergistically web document clustering, the semantic query
expansion process (based on WordNet and user profile), and
memetic algorithms through a model of intelligent agents.

The remainder of the paper is organized as follows.
Section 2 presents related work. Section 3 presents a
personalized web document clustering model, i.e. the query
expansion process, the clustering and labeling algorithm, and
the user profile. Section 4 shows the experimental results.
Finally, some concluding remarks and suggestions for future
work are presented.

II. RELATED WORK

In general, clustering algorithms can be classified into [19]:
hierarchical, partitional, density-based, grid-based, and
model-based algorithms, among others. The algorithms most
commonly used for web document clustering have been the
hierarchical and the partitional [4]. The hierarchical
algorithms generate a dendogram or a tree of groups. This tree
starts from a similarity measure, among which are: single link,
complete link and average link. In relation to web document
clustering, the hierarchical algorithm that brings the best
results in accuracy is called UPGMA (Unweighted Pair-
Group Method using Arithmetic averages) [5]. UPGMA was

32Polibits (47) 2013 ISSN 1870-9044

Carlos Cobos, Martha Mendoza, Elizabeth León, Milos Manic, and Enrique Herrera-Viedma

devised in 1990 [7] and is based on the vector space model,
using an average link based on the clusters cosine similarity
divided by the size of the two clusters that are being
evaluated. UPGMA has the disadvantage of having a time
complexity of O(n3) and being static in the process of
assigning documents to clusters.

In partitional clustering, the algorithms perform an initial
division of the data in the clusters and then move the objects
from one cluster to another based on the optimization of a
predefined criterion or objective function [19]. The most
representative algorithms using this technique are: K-means,
K-medoids, and Expectation Maximization. The K-means
algorithm is the most popular because it is easy to implement
and its time complexity is O(n), where n is the number of
patterns or records, but it has serious disadvantages: it is
sensitive to outliers, it is sensitive to the selection of the initial
centroids, it requires a prior definition of the number of
clusters, and the obtained clusters are only hyper spherical in
shape [8]. In 2000, a Bisecting K-means [4, 7] algorithm was
devised. This algorithm combines the strengths of the
hierarchical and partitional methods reporting better results
concerning the accuracy and the efficiency of the UPGMA
and the K-means algorithms.

The first algorithm to take the approach based on frequent
phrases shared by documents in the collection was put
forward in 1998 and called Suffix Tree Clustering (STC) [7,
8]. Later in 2001, the SHOC (Semantic, Hierarchical, Online
Clustering) algorithm was introduced [12]. SHOC improves
STC and is based on LSI and frequent phrases. Next in 2003,
the Lingo algorithm [11, 20] was devised. This algorithm is
used by the Carrot2 web searcher and it is based on complete
phrases and LSI with Singular Value Decomposition (SVD).
Lingo is an improvement of SHOC and STC and (unlike most
algorithms), tries first to discover descriptive names for the
clusters and only then organizes the documents into
appropriate clusters.

NMF (also in 2003) is another example of these algorithms,
it is based on the non-negative matrix factorization of the
term-document matrix of the given document corpus was
made available [21]. This algorithm surpasses the LSI and the
spectral clustering methods in document clustering accuracy
but does not care about cluster labels.

Another approach was proposed by the Pairwise
Constraints guided Non-negative Matrix Factorization
(PCNMF) algorithm [22] in 2007. This algorithm transforms
the document clustering problem from an un-supervised
problem to a semi-supervised problem using must-link and
cannot-link relations between documents. In 2007, the
Dynamic SVD clustering (DSC) [14] algorithm was made
available. This algorithm uses SVD and minimum spanning
tree (MST). This algorithm has better performance than
Lingo. Finally, in 2008, the CFWS (Clustering based on
Frequent Word Sequences) and the CFWMS (Clustering
based on Frequent Word Meaning Sequences) [7] algorithms

were proposed. These algorithms represent text documents as
frequent word sequences and frequent concept sequences
(based on WordNet), respectively and they are mostly used in
text clustering.

In relation to a frequent word sets model for web document
clustering, in 2002, FTC (Frequent Term-Based Text
Clustering) and HFTC (Hierarchical Frequent Term-Based
Text Clustering) algorithms became available [15]. These
algorithms use combinations of frequent words (association
rules approach) shared in the documents to measure their
proximity in the text clustering process.

Then in 2003, FIHC (Frequent Item set-based Hierarchical
Clustering) was introduced [13] which measures the cohesion
of a cluster using frequent word sets, so that the documents in
the same cluster share more of the frequent word sets than
those in other groups. These algorithms provide accuracy
similar to that reported for Bisection K-means, with the
advantage that they assign descriptive labels to associate
clusters.

Finally, looking at partitional clustering from an
evolutionary approach: in 2007, three hybridization methods
between the Harmony Search (HS) [23] and the K-means
algorithms [24] were compared. These were: Sequential
hybridization method, interleaved hybridization method and
the hybridization of K-means as a step of HS. As a general
result, the last method was the best choice of the three. Later,
in 2008 [9, 23, 25], based on the Markov Chains theory the
researchers demonstrated that the last algorithm converges to
the global optimum.

Next, in 2009, a Self-Organized Genetic [17] algorithm was
devised for text clustering based on the WordNet ontology. In
this algorithm, a modified LSI model was also presented,
which appropriately gathers the associated semantic
similarities. This algorithm outperforms the standard genetic
algorithm [26] and the K-means algorithm for web document
clustering in similar environments. In 2010, two new
algorithms were put forward. The first one, called IGBHSK
[27] was based on global-best harmony search, k-means and
frequent term sets. The second one, called WDC-NMA [28]
was based on memetic algorithms with niching techniques.
These two researches outperform obtained results with Lingo
(Carrot2) over few datasets.

III. THE PROPOSED MODEL: TOPICSEARCH
TopicSearch is a personalized web clustering engine based

on semantic query expansion, user profile, and memetic
algorithms through a model of intelligent agents. In the
proposed model, the web document clustering problem was
transformed from an on-line scenario to an on-line and off-
line scenario. With this change, users can execute queries with
instant response and users can send a query and see results
later. In both scenarios, the results are very promising, but
quality of results increases when the clustering algorithm is
executed more time.

33 Polibits (47) 2013ISSN 1870-9044

TopicSearch - Personalized Web Clustering Engine Using Semantic Query Expansion, Memetic Algorithms and Intelligent Agents

Fig 2. Agents in the Query Expansion Process

Fig 3. Agents in the Search and Clustering Process

The main actor in TopicSearch is the user. The user can
execute multiple queries at the same time. Each query is
handled by a group of agents. To present the model, the entire
search process was organized into three sub processes: query
expansion, search and clustering, and the visualization of
results.

Query Expansion: When the user is typing the query it is
supported by an interface agent called Query Expansion
Agent, which is responsible for displaying a list of terms that
help the user to complete the query.

This agent uses the User Profile Agent which is responsible
for finding through a web service the user profile data—in this
case, a set of terms with its relevance and correlation among
those terms. If the User Profile Agent has no information from
the user, the Query Expansion Agent uses an external service
of auto-complete, for example, the auto-complete Google
service (Fig 2).

Search and Clustering: When the user starts the process of
searching, a Coordinator Agent is activated for each specific
query. This agent activates a Search Results Acquisitions
Agent in order to retrieve the results of traditional web search
engines like Google, Yahoo!, Bing, etc. At this point the
Search Results Acquisitions Agent generates many agents as
external web search services registered in the model, thereby
achieving a parallel job which reduces the processing time at

this stage of the process. In Fig 3 these agents are called
Google Agent, Yahoo! Agent and Other Agent. When the
results acquisition process ends, Coordinator Agent activates a
Document Preprocessing Agent in charge of creating a
matrix of terms by documents or TDM matrix. After the
construction of the TDM matrix, Coordinator Agent activates
the Clustering and Labeling Agent, which is responsible for
creating clusters of documents based on a memetic algorithm
called Agents-WDC and assigns labels to the clusters based
on a frequent phrases approach.

As a result, the model obtains a Clustered Documents and
Cluster Labels which can be viewed by the user at any time
(Fig 3).

Visualization of results: The user visualizes a form with a
list of queries that he/she had previously registered in the
system. Each query shows a status (Started, Completed, in-
Evolution). When the Coordinator Agent is in the process of
acquisition or pre-processing of results the query is in the
Initiated state and cannot be stopped. When running the
Clustering and Labeling Agent, the status of the query is in-
Evolution and the process can be stopped. In this case the
system generates the cluster labels of the best result found so
far and goes on to state Completed. Finally, the completed
state occurs when the Coordinator Agent ends the process for
the query.

34Polibits (47) 2013 ISSN 1870-9044

Carlos Cobos, Martha Mendoza, Elizabeth León, Milos Manic, and Enrique Herrera-Viedma

Fig 4. Agents in the Visualization of Results Process

When the user selects the results of a query, the system
displays a form (interface) divided into two parts, the left side
with a list of cluster labels and the right side with the list of
documents belonging to each cluster label. When the user
marks a document as relevant or not relevant, the Relevant
Record Agent processes the document terms and through the
User Profile Agent updates the user profile in the web service
which centralizes the storage of users (see Fig 4).In this way,
future queries can enjoy a more relevant search expansion
process based on an updated profile.

The Web Service: Centralized Storage component allows
users to log in from different computers and makes updated
user profile information always available. Moreover, with the
Windows Client Application (or Smart Client Application),
the system takes advantage of the processing capacity of
personal computers to reduce the workload of the centralized
application server.

On the other hand, the deployment (installation and
updates) for smart client applications is becoming increasing-
ly easy to do. Next, we present a detailed description of
different components of the model.

A. Query Expansion
In VSM, it has been shown that the process of query

expansion improves the relevance (as measured by the
accuracy) of the results delivered to users [2, 29, 30]. The
expansion of the query in a web search system is usually
made from one of two perspectives: user relevance feedback
(URF) or automatic relevance feedback (ARF) [2, 29, 30].
URF requires the user to mark documents as relevant or not
relevant.

The terms in these marked documents that the system has
found to be relevant or not are added to or removed from each
of the new user queries [2, 29, 30]. Rocchio proposes formula
(1) to generate the expanded query, where q is the query typed
by the user initially, R is a set of relevant documents, R' is a
set of non-relevant documents, α, β and γ are tuning constants
for the model and q is the expanded query [2, 29, 30]:

qe = ∝∗ q +
β

|R|� d
d∈R

−
γ

|R′| � d
d∈R′

. (1)

In contrast, ARF (also known as pseudo feedback) expands
the queries automatically based on two methods: considering
global documents and considering partial documents [2, 29,
30].

In the global document-based methods, all documents in
the collection are analyzed and relationships established
between terms (words). As such, these methods are typically
performed based on thesauri.

The disadvantage of these methods is that they need all the
documents. In addition, the process of updating the thesaurus
can be expensive and complex [2, 29, 30].

In the methods based on partial documents, the query is
originally sent to the search engine. With the results delivered,
a group of documents is selected (the first results, the most
relevant) and with these the query is reformulated (Rocchio’s
formula with γ = 0) and re-sent to the search engine. The
results of the second (or expanded) search are those which are
actually presented to the user [2, 29, 30].

Both expansion models have some problems: for example
one assumes that the user is always going to mark documents
as relevant or not and the other assumes that the first results
from the original query are all relevant [2, 29, 30].

Carpineto et al. [1] presented the need for giving more
importance to the query expansion process in web clustering
engines. TopicSearch offers a query expansion process that
gives greater importance to the semantic similarity between
terms (words), but leaves option for users to feedback into the
model which documents are relevant, and which are not.

TopicSearch starts the search process with a user query
(based on key words.) This query is expanded explicitly with
the help of the user, through an auto-complete option. This
option is based on a dynamic, drop-down list of terms that are
displayed in a similar way to those of Google.

The auto-complete option is generated based on the list of
terms that have been relevant to the user in earlier queries.

35 Polibits (47) 2013ISSN 1870-9044

TopicSearch - Personalized Web Clustering Engine Using Semantic Query Expansion, Memetic Algorithms and Intelligent Agents

Fig 5. Expanded query for each term: synonyms (S), hypernyms (H) and
hyponyms (h).

The process involves three steps described as follows: (1)
pre-processing and semantic relationship, (2) terms listed in
the profile and (3) using an external service.

1. Pre-processing and semantic relationship: It first takes
the user query and removes special characters, converting
each term to lower case and eliminating stop words.
Then, it finds the most common synonyms (S, set of
terms or synset in different languages that are used to
represent the same concept), hypernyms (H, set of terms
in the next level above in the hierarchy of the ontology,
generalizations of the concept) and hyponyms (h, set of
terms in the next level below in the hierarchy of the
ontology, specializations of the concept) of the terms that
the user has typed, based on WordNet (see Fig 5). In this
research—as in WordNet—a synset is a set of terms to
describe the same concept. The terms are searched in a
general ontology, thesaurus or lexical database such as
WordNet, based on partial matching on the new term in
query. In summary, from the vector of original terms that
make up the user query q = {T1, T2,…,Tn} each of the
terms of the search vector is taken and concepts are
formed so that each concept C is equal to (T, S, H, h).
Each concept is equal to the term typed by the user and
the semantically related terms that were retrieved from
WordNet.

2. Terms listed in the profile: In the previous step we
obtained a temporary extended search, but not all of these
terms should be presented to the user in an auto-complete
list. This is why it is necessary to define the order of
presentation of the terms, so that to a greater degree they
relate to the needs of the user. The aim of this step is just
that, to set the order of presentation in relation to the user
profile. To achieve this, the user’s term co-occurrence
matrix (matrix S) is consulted—the degree of correlation
between each term and its related terms (S, H and h) for
the current user (U), placing them in order of declining
correlation (the most correlated to the least correlated).
The first item in the drop-down list that is shown to the
user is obtained by concatenating the original query
without any processing and the term (S, H or h) with the
highest degree of correlation. The second is obtained in a

similar manner, the original query and the term with the
second highest degree of correlation and so on up to a
maximum number of terms to be presented on the
interface (the model parameter is known as
AutoComplete List Size or ACLS). In the event that the
user has no information in the S matrix, the drop-down
list gives priority to the terms written most recently,
adding line by line first the synonyms, then the hyponyms
and finally the hypernyms.

3. Using an external service: If in Step 1 (Pre-processing
and semantic relation) of the model there is no
information listed in WordNet, it goes to an external auto
complete service, such as that of Google (based on the
analysis of query logs of its users, with a focus on
collaborative filtering). At this point, and as a future
work, the model could incorporate an automatic approach
of relevance feedback based on the Top-N documents
retrieved (using an automatic relevance feedback based
on partial documents).

The user profile is a fine-grained structure that relates for
each user the number of documents reviewed by the user as
relevant and irrelevant (N) (user feedback), the number of
documents containing a term i (ni), the number of relevant
documents (R) and the number of relevant documents
containing the term i (ri). Moreover, for each document, the
presence (1) or absence (0) of terms is recorded. From this
information a matrix of term co-occurrence for each user is
generated. This co-occurrence matrix, called S, is calculated
as shown in Fig 6.

01 For each document d Є D do
02 For each term ti Є d do
03 For each window wz centered in term ti do
04 For each term tj Є wz where tj != ti do
05 Si.j = Ci,j * IDFi * IDFj
06 Sj,i = Si,j

07 End-for
08 End-for
09 End-for
10 End-for

Fig 6. Algorithm for generating the term co-occurrence matrix (S).

The correlation factor Ci,j is a normalized factor
traditionally used in information retrieval [2].

It is defined by (2), where Fi is the frequency of term i, Fj is
the frequency of term j and Fi,j is the frequency of co-
occurrence of terms i and j:

idfi =
Fi,j

Fi + Fj − Fi,j
. (2)

The relative importance of a term in information retrieval is
given by its IDF (inverse document frequency) value.

T1 T2 Tn

S1

H1

h1

S2

H2

h2

Sn

Hn

hn

q =

qT =

36Polibits (47) 2013 ISSN 1870-9044

Carlos Cobos, Martha Mendoza, Elizabeth León, Milos Manic, and Enrique Herrera-Viedma

Fig 7. Graph of the IDF function used to calculate the S matrix. The function with N = 10 is shown by the marker in the form of squares and the function with N
= 50 is shown by the ovals. The X axis shows different values of ni and ri, beginning with (0-0), passing for example through (6,3) and finishing at (10-6). The
graph shows values of ni between 0 and 10 and values of ri between 0 and 6. For both functions the maximum is achieved when ni = ri, in this case (6,6) and the
minimum when ri = 0, regardless of the value of ni.

To define this value, a range of formula can be used, e.g.

the Robertson and Spärck-Jones (RSJ) proposal [31] one of
the most cited in the literature. For our research, the RSJ
formula was not suitable for construction of the S matrix. A
new function based on formula (3) was defined instead. This
IDF function (see Fig 7) defines the importance of a term in
relation to the number of documents reviewed by the user (N),
the number of documents relevant to the user (R), the number
of documents in which the term i appears (ni) and the number
of relevant documents in which the term appears i (ri):

idfi = �

ri
N

 si ni ≤ R
riR
niN

 si ni > 𝑅
� (3)

The IDF function proposed has a continuous range of
values between zero and one [0,1]: zero when the term is not
relevant at all and one when it is considered entirely relevant.
The degree of relevance is in relation to the range of relevant
documents, i.e. if there are many documents reviewed (as in
the graph of N=50) and among these the term appears in only
a few documents (e.g. 6) and all are relevant, the function has
a value of 0.1, compared with a smaller number of documents
(for example in the graph N=10), which a value of 0.6 would
be obtained.

This IDF function was compared with the traditional
Rocchio algorithm in three scenarios (without memory, with
memory of the session and a long term memory) using the
Communications of the ACM data set, and it obtains better
results (see [32] for details).

The term co-occurrence matrix (S) of the user allows the
ordered generation of the list of terms that complement those
used by the user in the search expansion process as explained
above in Step 2 “Terms listed in the profile.”

B. Search Results Acquisition and Preprocessing
After performing the search expansion process, there

follows the process of search results acquisition. In this step,
the query consists of key words typed by the user (those
directly typed by the user and those selected from the auto
complete list).

The Acquisition process conducts in parallel (different
threads of execution) the collection of results in the various
traditional search engines. In the initial model, Google,
Yahoo! and Bing are used. As results are returned by the
traditional search engines, pre-processing of entries is carried
out. This process includes removing special characters and
converting the text to lower case, among others; removing
stop words; stemming; and filtering duplicate documents
(documents reported concurrently by more than one
traditional search engine). In addition, for each document the
observed frequency of its terms is calculated and the
document is marked as processed.

When all results have been acquired, documents are
organized in a Terms by Documents Matrix using formula
(4), which takes into account the relative importance (IDF
value) of each term in the retrieved results from traditional
search engines. This matrix is the original source of data for
the clustering algorithm:

𝑤𝑖,𝑗 = �
𝐹𝑖,𝑗

max(Fi)
� 𝐿𝑜𝑔 �

𝑁
𝑛𝑗 + 1

�. (4)

C. Cluster construction and labeling
Once the acquisition of search results has finished, the

process of Cluster construction and Labeling follows. This
process can be carried out using a variety of existing
algorithms, among them Lingo [11], STC [8], SHOC [12],

37 Polibits (47) 2013ISSN 1870-9044

TopicSearch - Personalized Web Clustering Engine Using Semantic Query Expansion, Memetic Algorithms and Intelligent Agents

Dynamic SVD [14]. But, because it should be improve the
usefulness of the groupings and clarity of the labeling—as it
was mentioned above—, a new algorithm called Agents-WDC
was developed.

Agents-WDC is a description-centric algorithm [1] for web
document clustering [1] based on Memetic Algorithms (MA)
(MAs “are population-based meta-heuristic search methods
inspired by both Darwinian principles of natural evolution and
Dawkins notion of a meme as a unit of cultural evolution
capable of individual learning” [33].) The memetic approach
is used to combine a global/local strategy of search in the
whole solution space. The k-means algorithm was used as a
local strategy for improving agents in the MA. Arrival of
foreign agents (random generation in evolution process) was
used to promote diversity in the population and prevent the
population from converging too quickly. The Bayesian
Information Criterion (BIC) expressed by formula (5) was
used as a fitness function [5, 34]. The evolution process is
based on one agent at a time (not of populations) in a specific
number of islands and the VSM is used for representing
documents in the clustering stage, but in the labeling stage the
frequent phrases model is used. Agents-WDC steps can be
summarized in Fig 8:

𝐵𝐼𝐶 = 𝑛 𝐿𝑛 �
𝑆𝑆𝐸
𝑛
� + 𝑘 𝐿𝑛(𝑛),

𝑆𝑆𝐸 = ���𝑃𝑖 ,𝑗�𝑥𝑖 − 𝑐𝑗��
𝑛

𝑖=1

𝑘

𝑗=1

.
(5)

Here n is the total number of documents, k is the number of
clusters and SSE is the sum of squared error from the
similarities of the different clusters; Pi,j is 1 if the document xi
belong to cluster j and 0 in other case, and cj is the centroid of
the cluster j.

Initialize algorithm parameters: In this research, the
optimization problem lies in minimizing the BIC criteria
(Fitness function). Agents-WDC needs the following
parameters to be specified: Number of Islands (NI),
Population Size (PS), Mutation Rate (MR), Minimum
Bandwidth (MinB) and Maximum Bandwidth (MaxB) for
mutation operation, Maximum Execution Time (MET) in
milliseconds or Maximum Number of Iterations (MNI) to stop
the algorithm execution.

Representation and Initialization: In Agents-WDC, each
agent has a different number of clusters, a list of centroids,
and the objective function value, based on BIC, which
depends on the centroids’ location in each agent and the
number of centroids.

The cluster centers in the agent consist of D x K real
numbers, where K is the number of clusters and D is the total
number of terms (words in the vocabulary). For example, in
three-dimensional data, the agent < [0.3|0.2|0.7], [0.4|0.5|0.1],
[0.4|0.1|0.9], [0.0|0.8|0.7], 0.789> encodes centers of four (K
value) clusters with a fitness value of 0.789.

1 Initialize algorithm parameters.
2 Repeat (inner sentences are executed in parallel—each

population correspond to an island)
3 Randomly initialize population (PS agents), which

encode cluster centers with different numbers of
clusters.

4 Run the k-means routine for each agent in population.
5 Calculate fitness value for each agent in the initial

population based on (5).
6 Repeat
7 Select pairing parents based on roulette wheel.
8 Generate one intermediate offspring by

applying genetic operators (crossover and
mutation) of the paired parents.

9 Run the k-means routine for the offspring.
10 Calculate fitness value for the offspring based

on (5).
11 If the offspring is invalid (i.e., number of

clusters equal to one due to the death units
problem in the clustering process) then it is
replaced with a new agent randomly initialized
(arrival of foreign agents)

12 If the fitness of the offspring is better than the
worst agent on population, then replace the
worst agent by the offspring.

13 Until MET or MNI is reached.
14 Select best solution (agent) in the population.
15 Until NI Island finished the process.
16 Select best solution (agent) from all islands.
17 Assign labels to clusters.
18 Overlap clusters.

k-means routine (input: Initial set of centroids)
1 Repeat
2 Re-compute membership of each document according to

current centroids and cosine similarity based on (6).
3 Update centroids based on new membership information
4 Until no changes in clusters
5 Return final set of centroids

Fig 8. Agents-WDC algorithm for web document clustering

Initially, each centroid corresponds to a different document
randomly selected in the TDM matrix (Forgy strategy in the k-
means algorithm [35]).

The initial number of clusters, K value, is randomly
calculated from 2 to Kmax (inclusive), where K is a natural
number and Kmax is the upper limit of the number of clusters
and is taken to be �𝑁 2⁄ + 1 (where N is the number of
documents in the TDM matrix), which is a rule of thumb used
in the clustering literature by many researchers.

Roulette wheel: In step 7, one parent p1 is chosen from the
population based on roulette wheel selection [36]. Also, its
mate p2 is chosen by the same process (preventing p1 equal
to p2).

38Polibits (47) 2013 ISSN 1870-9044

Carlos Cobos, Martha Mendoza, Elizabeth León, Milos Manic, and Enrique Herrera-Viedma

Crossover and mutation: At step 8 a traditional n-point
crossover is used [37]. During crossover, the cluster centers
are considered to be indivisible, so crossover points can only
lie in between two cluster centers. In this process, just one
offspring is generated. After crossover, a low probability of
mutation (MR) is applied to the offspring. Uniform mutation
between Minimum Bandwidth (MinB) and Maximum
Bandwidth (MaxB) (as found in the Harmony Search
Algorithm [23]) is applied to the chosen cluster dimension /
attribute / term [x = x ± Random (MinB, MaxB)]. When
mutation operation generates a value that reaches data
boundaries, the mutation value is applied in the opposite way
(mirror):

𝑆𝑖𝑚�𝑑𝑖 ,𝑑𝑗� =
∑ �𝑊𝑖,𝑑𝑖𝑊𝑖,𝑑𝑗�
𝐷
𝑖=1

�∑ �𝑊𝑖,𝑑𝑖�
2𝐷

𝑖=1 �∑ �𝑊𝑖,𝑑𝑗�
2

𝐷
𝑖=1

. (6)

Assign labels to clusters: This step corresponds to Step 2
“Frequent Phrase Extraction” in Lingo [11], but in Agents-
WDC this method is used for each generated cluster in
previous steps. By the above method, some changes were
made to the original algorithm. This process works as shown
in Fig 9.

Overlap clusters: Finally, each cluster includes documents
that fall into other clusters too, if these documents are at a
distance of less than or equal to the average distance of the
cluster.

IV. EXPERIMENTS
Measuring the clustering performance of a document

clustering algorithm is a complex issue. There are many
different approaches and no standard methodology.

In general, there are two main categories of evaluation:
internal quality (based on objective functions without
reference to the output, this is the least used) and external
quality (which evaluates the output clustering). External
quality assessment can be further divided into gold-standard,
task-oriented and user evaluation.

In gold-standard evaluation, results of the algorithm are
compared with a pre-determined ideal clustering. In task-
oriented evaluation, a performance analysis of a particular
part of an algorithm is done.

External evaluation using gold-standard evaluation and user
evaluation is the most common approach for evaluating the
performance of web document clustering algorithms [38].
Thus, in this research this is the approach that has been used.

A. Datasets for Assessment
The Open Directory Project (or DMOZ) is commonly used

as a neutral third party classifier, using human editors to
classify manually and store thousands of websites. In this
research a total of fifty datasets were randomly built. Datasets
are available online at www.unicauca.edu.co/~ccobos/wdc/
wdc.htm.

01 Conversion of the representation: Each document in the
current cluster is converted from character-based to word-
based representation.

02 Document concatenation: All documents in the current
cluster are concatenated and a new document with the
inverted version of the concatenated documents is created.

03 Complete phrase discovery: Right-complete phrases and
left-complete phrases are discovered in the current cluster,
then the right-complete phrases and left-complete phrases are
alphabetically sorted, and then the left- and right-complete
phrases are combined into a set of complete phrases.

04 Final selection: Terms and phrases whose frequency exceeds
the Term Frequency Threshold are selected for the current
cluster.

05 Building of the “Others” label and cluster: if some
documents don’t reach the Term Frequency Threshold, then
they are sent to the other clusters.

06 Cluster label induction: In the current cluster, a Term-
document matrix is built. Then, using cosine similarity, the
best candidate terms or phrases for the cluster (which
optimize SSE) are selected.

Fig 9. Frequent Phrase Algorithm for Labeling

On average, datasets have 129.2 documents, 6 topics and
643.9 terms. Fig 10 shows different views of the datasets
content and Table 1 shows detailed information from each
dataset.

B. Parameters and Measures
Parameter values in Agents-WDC were equal for all

datasets. NI equal to 2, PS equal to 5, MR equal to 0.5%,
MinB equal to 0,0005, MaxB equal to 0.005, and MNI
between 0 and 40 (depending on the experiment). Kmax value
was equal to �𝑁 2⁄ + 1, where N is the number of
documents.

There are many different methods proposed for measuring
the quality of a generated clustering compared to an ideal
clustering. Three of the best known are precision, recall and
F-measure, commonly used in information retrieval and
classification tasks [9].

In this research, the weighted Precision, weighted Recall
and weighted F-measure (the harmonic means of precision
and recall) measures are used to evaluate the quality of
solution.

Given a collection of clusters, {𝐶1,𝐶2, …𝐶𝑘}, to evaluate its
weighted Precision, weighted Recall and weighted F-measure
with respect to a collection of ideal clusters {𝐶1𝑖 ,𝐶2𝑖 , … 𝐶ℎ𝑖},
these steps are followed: (a) find for each ideal cluster 𝐶𝑛𝑖 a
distinct cluster 𝐶𝑚 that best approximates it in the collection
being evaluated, and evaluate 𝑃(𝐶,𝐶𝑖), 𝑅(𝐶,𝐶𝑖), and
𝐹(𝐶,𝐶𝑖) as defined by (7) and (8). (b) Calculate the weighted
Precision (P), weighted Recall (R) and weighted F-measure
(F) based on (9):

39 Polibits (47) 2013ISSN 1870-9044

TopicSearch - Personalized Web Clustering Engine Using Semantic Query Expansion, Memetic Algorithms and Intelligent Agents

Fig 10. Datasets used for evaluation vs. documents, topics and number of terms

TABLE 1
GENERAL DESCRIPTION OF DATASETS USED FOR EVALUATION

(P STANDS FOR PRECISION AND R FOR RECALL USING SUPPORT VECTOR MACHINE)

Dataset Documents Topics Attributes P R Dataset Documents Topics Attributes P R
1 121 4 559 96.865 96.694 26 119 4 498 89.428 88.235
2 133 7 583 90.183 89.474 27 121 4 497 90.062 88.43
3 129 5 658 94.358 93.023 28 125 8 507 90.757 89.6
4 130 9 689 87.601 83.846 29 151 8 763 90.694 89.404
5 108 6 578 84.453 81.481 30 133 6 703 87.352 85.714
6 131 7 694 94.252 93.893 31 164 6 616 96.048 95.732
7 144 6 675 93.984 93.056 32 121 6 609 91.982 90.909
8 161 7 822 92.501 91.304 33 134 6 681 87.574 88.06
9 135 5 614 92.131 91.111 34 141 7 703 91.357 89.362
10 110 6 650 92.629 89.091 35 135 5 636 97.9 97.778
11 139 7 739 94.427 93.525 36 122 4 679 96.006 95.902
12 131 6 731 90.037 89.313 37 118 7 641 85.089 79.661
13 141 6 732 67.174 66.429 38 129 7 601 88.219 86.822
14 111 5 540 95.118 93.694 39 136 5 598 95.18 94.853
15 112 5 629 94.943 94.643 40 153 7 761 89.747 89.542
16 140 4 624 93.786 93.571 41 112 3 585 92.695 91.071
17 116 5 609 92.92 92.241 42 140 8 655 87.875 87.143
18 136 4 796 94.443 94.118 43 119 5 564 94.624 94.118
19 116 7 623 94.31 93.966 44 131 4 593 94.445 93.13
20 116 6 614 88.61 84.483 45 108 5 674 80.426 80.556
21 118 8 575 83.678 78.814 46 129 6 679 91.334 89.147
22 104 5 495 93.477 93.269 47 125 7 606 87.263 86.4
23 128 7 579 92.07 90.625 48 137 8 767 91.094 90.511
24 128 6 684 86.416 85.156 49 138 5 648 89.577 88.406
25 147 7 808 88.835 87.075 50 132 10 632 88.509 76.515

0 5 10 15 20 25 30 35 40 45 50
100

110

120

130

140

150

160

170
Dataset vs Number of Documents

Dataset

N
um

be
r o

f D
oc

um
en

ts

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10
Dataset vs Number of Topics

Dataset

N
um

be
r o

f T
op

ic
s

0 5 10 15 20 25 30 35 40 45 50
450

500

550

600

650

700

750

800

850
Dataset vs Number of Terms

Dataset

N
um

be
r o

f T
er

m
s

2 3 4 5 6 7 8 9 10 11
450

500

550

600

650

700

750

800

850
Topics vs Number of Terms

Topics

N
um

be
r o

f T
er

m
s

40Polibits (47) 2013 ISSN 1870-9044

Carlos Cobos, Martha Mendoza, Elizabeth León, Milos Manic, and Enrique Herrera-Viedma

TABLE 2
PRECISION, RECALL AND F-MEASURE IN K-MEANS, BISECTING K-MEANS, STC, LINGO AND AGENTS-WDC

Algorithm Time Precision Recall F-Measure
Number of

Fitness
evaluations

Ideal number of
topics (average)

Obtained number of
clusters (average)

k-means 1.0 ± 0.262 75.08 ± 13.39 55.78 63.59 ± 9.06 – 6.02 ± 1.464 8.72 ± 1.386
Bisecting k-means 0.53 ± 0.009 70.49 ± 10.22 40.08 49.21 ± 4.75 – 6.02 ± 1.464 11.94 ± 1.23
STC 0.02 ± 0.003 77.68 ± 9.59 45.18 56.71 ± 8.857 – 6.02 ± 1.464 15.97 ± 0.24
Lingo 0.68 ± 0.177 80.34 ± 4.419 29.53 43.00 ± 4.761 – 6.02 ± 1.464 34.46 ± 1.784
Agents-WDC 1.55 ± 0.38 79.72 ± 13.95 59.29 67.43 ± 9.979 12 = 7 + PS 6.02 ± 1.464 8.96 ± 2.185
Agents-WDC 1.78 ± 0.45 81.46 ± 11.15 61.17 69.29 ± 9.464 14 = 9 + PS 6.02 ± 1.464 8.80 ± 2.000
Agents-WDC 1.85 ± 0.56 82.63 ± 9.311 61.07 69.72 ± 8.886 16 = 11 + PS 6.02 ± 1.464 8.90 ± 1.632
Agents-WDC 5.57 2.073 88.85 ± 8.731 63.95 73.53± 7.698 45 = 40 + PS 6.02 ± 1.464 9.44 ± 2.21

𝑃(𝐶,𝐶𝑖) =
�𝐶 ∩ 𝐶𝑖�

|𝐶| ,

𝑅(𝐶,𝐶𝑖) =
�𝐶 ∩ 𝐶𝑖�

|𝐶𝑖|
;

(7)

𝐹(𝐶,𝐶𝑖) =
2𝑃(𝐶,𝐶𝑖)𝑅(𝐶,𝐶𝑖)
𝑃(𝐶,𝐶𝑖) + 𝑅(𝐶,𝐶𝑖)

; (8)

𝑃 =
1
𝑇
��𝐶𝑗𝑖�𝑃�𝐶𝑚,𝐶𝑗𝑖�
ℎ

𝑗=1

;

𝑅 =
1
𝑇
��𝐶𝑗𝑖�𝑅�𝐶𝑚,𝐶𝑗𝑖�
ℎ

𝑗=1

;

𝐹 =
2𝑃𝑅
𝑃 + 𝑅

;

𝑇 = ��𝐶𝑗𝑖�.
ℎ

𝑗=1

(9)

Here, C is a cluster of documents and cluster 𝐶𝑖 is an ideal
cluster of documents.

C. Results with Datasets
The algorithm was compared with a version of k-means (it

executes several solutions of k-means and selects the best
solutions based on BIC criteria), Bisecting K-means, STC and
Lingo (last three algorithms are provided by the free open
source Carrot2 Document Clustering at www.carrot2.org and
were used with its default values).

Using an on-line scenario (with 2.0 seconds as a maximum
time of execution and without query expansion support),
algorithms was executed 30 times over each dataset and the
averages were calculated to show them as results. These
promising results are shown in Table 2. High values of
Precision, Recall, and F-Measure are desirable.

In Table 2, the best results are presented when Agents-
WDC is executed 11 iterations (approximately 1.85 seconds
in a desktop computer with windows vista of 32 bits, 4 GB of
RAM and Intel Pentium Dual CPU at 2.16 GHz. Time has a
linear correlation with the iterations, equivalent in this setting

to 𝑇𝑖𝑚𝑒 = 0,1116 ∗ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 + 0,1395). Also, Agents-
WDC reports very competitive results from 7 iterations (1.55
seconds of execution time). Recall and F-Measure is always
better with Agents-WDC algorithm.

Lingo and STC reports very good precisions with a low
time of execution, but Recall and F-Measure are too far from
Agents-WDC results. The recall distance between Agents-
WDC and STC is around 15% on Recall and around of 30%
against Lingo.

Lingo reported the lowest rate of dispersion in precision,
while Agents-WDC reported in 1.85 seconds more than twice
that value. Although in Agents-WDC the precision variation
decreases over the iterations, this is an issue that should be
studied further.

Another important difference between Agents-WDC,
Bisecting k-means, STC and Lingo is the number of clusters.
Agents-WDC always defines a better value of K (number of
clusters). In Lingo and STC with an average of 28 and 9
extra clusters respectively, results of precision can be biased.
Therefore, the research group plans to use another kind of
metrics to compare results of STC and Lingo, for example
BCubed Precision and BCubed Recall [39].

In Fig 11, curves of precision, recall and f-measure through
different number of generations are shown. All values
increasing with the number of generations. Therefore, when
users can wait for results, Agents-WDC organized in better
way clusters of documents and proved the best option. BIC
with cosine similarity is a good option for web document
clustering because precision and recall both increase when
Agents-WDC optimizes BIC (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 6.2759 ∗
 ln(𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) + 65.015 with R2 = 95.43%), but in some
generations (e.g. 4 to 6 generations) this positive relation fails.
Thus, the research group plans to define a better fitness
function for evolutionary algorithms in web document
clustering based on genetic programming.

Further analysis showed that in general Agents-WDC
increases the quality of cluster (based on precision and recall)
when it uses more generations regardless of the number of
documents, number of topics, or number of attributes in the
dataset. Some datasets, though, do not comply with this rule.

41 Polibits (47) 2013ISSN 1870-9044

TopicSearch - Personalized Web Clustering Engine Using Semantic Query Expansion, Memetic Algorithms and Intelligent Agents

Fig 11. Precision, Recall and F-Measure for Agents-WDC through different periods of time

Fig 12. Effectiveness of new solutions generated at different number of iterations

This situation reinforces the need for defining a new

objective function as was mentioned above, but also implies
the need to analyze the impact of noise on the k-means
algorithm, and the need to use other local optimization
algorithms.

New solutions (agents) generated (using the selection,
crossover, mutation and replace operators from Agents-WDC)
increase its effectively over iterations. Fig 12 shows a 48% of
effectively of the new solution in the first iteration, i.e. new
solution is better than other solutions in population. Next, the
effectiveness increases to 70% in second iteration, then it
increases to 90% in sixth iteration, and finally is around 100%
over the twelfth iteration.

Agents-WDC also provided better cluster labels than
Bisecting k-means, STC and Lingo. For example, Table 3
shows labels generated by all algorithms for dataset1 with 4
non-overlapping topics. Note that the clusters generated and

the order in which they are generated are different between
the algorithms.

It is clear that Agents-WDC and STC generate best labels,
while Lingo generates longer phrases and Bisecting k-means
generates a long list of terms for each cluster. Lingo’s long
labels, while expressive, can be too specific and not always
meaningful (e.g. “Shows how to Use”). Lingo only classified
74 out of 121 documents, much fewer than Agents-WDC,
STC and Bisecting k-means. Agents-WDC favors labels with
specific meanings closely related to documents in the cluster.

D. User Evaluation
Based on [40], a user-based evaluation method was used to

assess the clustering results produced by the model (on-line
scenario with 40 users) when data sources are Google, Yahoo!
and Bing. For a set of groups created in response to a single
query, the user answered whether or not:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 25 30 35 40
50

55

60

65

70

75

80

85

90
Precision, Recall and F-Measure by Agents-WDC at different number of iterations

P
er

ce
nt

ag
e

Precision
Recall
F-Measure

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pe
rc

en
ta

ge

42Polibits (47) 2013 ISSN 1870-9044

Carlos Cobos, Martha Mendoza, Elizabeth León, Milos Manic, and Enrique Herrera-Viedma

TABLE 3
LABELS GENERATED BY BISECTING K-MEANS, STC, LINGO AND AGENTS-WDC OVER DATASET 1

Real category in
DMOZ Bisecting k-means STC Lingo Agents-WDC (1.2seg)

Top/Business/Textiles
_and_Nonwovens/Fibe
rs/Wholesale_and_Dis
tribution (16),

Top/Health/Conditions
_and_Diseases/Cancer
/Breast (22),

Top/Computers/Progra
mming/Languages/Re
gular_Expressions
(34),

Top/Shopping/Food/S
weeteners/Honey (49)

Cancer, Breast, Male(13),
Nonwovens, Polyester,
English(13), Regular,
Allows, Perform(12),
Regular, Show,
Windows(12), Beeswax,
Candles, Overview(10),
Diagnosis, Symptoms,
Prevention(10), Raw,
Business, Unprocessed(10),
New, Royal, Zealand(9),
Examines, Mitchell,
Scott(6), Regex, JavaScript,
Tester(6), Beeswax, Sioux,
Clinically-oriented(5),
Forest, Ordering, Trees(5),
National, Centre,
Ovarian(4), Wax,
Cooperative, Indiana(4),
Links, Representatives,
Sites(2)

Regular Expressions(31),
Treatment, Diagnosis,
Breast Cancer(17), Yarns,
Natural and Man-made
Fibers(10), Honey(44),
Nonwovens, Staple Fiber,
Polyester(12), Regular
Expression(8), Polyester
Staple Fiber, Nonwovens
Production, Yarn
Spinning(5),
Information(19),
Natural(17), Beeswax(15),
Fibers(13), Products(13),
Raw(11), Raw Honey(6),
Offers(10), Other Topics(6)

Breast Cancer(9), Beeswax
Candles(6), Overview(5),
Produces Raw(5), Business(4),
English and German(4),
Sold(4), Windows(4),
Introduction to Regular(3), New
Zealand(3), North Dakota(3),
Organic(3), Parts(3), Polyester
and Polyamide Filaments(3),
Power of Regular(3), Shows
how to Use(3), Sizes(3),
Commercial(2), Farmer Market
Schedule(2), Flower(2), Gift
Baskets(2), Help(2),
International Merchants(2),
Jar(2), Male Breast Cancer(2),
National Breast and Ovarian
Cancer Centre(2), Regex(2),
Risk Factors(2), Scott Mitchell
Examines(2), Search(2), Short
Video and Details of
Symptoms(2), Source Code(2),
Visual(2), Other Topics(47)

Information Overview (14),
Produces Raw Honey (31),
Regular Expressions This
Article (31), Bee Pollen (12),
Details Of Symptoms Causes
Diagnosis Treatment
Prevention (16), Natural and
Man Made Fibers Yarns (17)

− (Q1: concise and meaningful cluster labels) the cluster
label for each group is in general representative of the
cluster content (much: R3, little: R2, or nothing: R1).
Concise and meaningful cluster labels help users to
decide which groups should review.

− (Q2: Usefulness of clusters) the cluster description and
content is useful (R3), moderately useful (R2) or useless
(R1). Usefulness of clusters is a general assessment
(quality of labels and content) only for those groups that
users decided relevant to query.

Then, for each document in each cluster, the user answered
whether or not:

− (Q3) the document (snippet) matches with the cluster
(very well matching: R3, moderately matching: R2, or
not-matching: R1), A very well matching document
would contain exactly the information suggested by the
cluster label. A moderately matching document would
still be somehow related to the group's topic. A non-
matching document, even though it might contain several
words from the group's label, would be completely
irrelevant to its cluster.

− (Q4) the document relevance (order or rank) in the cluster
was adequate (adequate: R3, moderately suitable: R2, or
inadequate: R1). The most relevant documents should
appear in the top of the list of group outcomes. This
makes the user spend less time to solve their information
needs.

Fig 13. General results for the four questions (TDM-BIC-FPH)

General results of Agents-WDC are shown in Fig 13. Most
user responses (90%) are R3 or R2. Therefore, results are very
promising and it is necessary to do a set of very controlled
experiments with more users, in order to generalize results. In
summary, most of the users find that: cluster labels are
representative, clusters are useful and documents are well
organized in each cluster.

V. CONCLUSIONS AND FUTURE WORK
The proposed personalized web document clustering model

allows users to define better queries, based on WordNet
(semantic similarity of terms) and a user profile (order based
on the new IDF function and correlation of terms). In the
description of the model, the query expansion process,

43 Polibits (47) 2013ISSN 1870-9044

TopicSearch - Personalized Web Clustering Engine Using Semantic Query Expansion, Memetic Algorithms and Intelligent Agents

acquisition of search results from traditional web search
engines, the preprocessing of input data, a web clustering
algorithm based on a memetic approach, and a proposal for
cluster labeling are all detailed. All of these processes were
easily modeled with agents.

The Clustering and Labeling Agent uses the Agents-WDC
algorithm. This algorithm is a web document clustering
algorithm based on Memetic Algorithms (global/local search
strategy) and the k-means algorithm (local solution
improvement strategy) with the capacity of automatically
defining the number of clusters. Agents-WDC shows
promising experimental results in standard datasets.
Comparison with k-means, Bisecting k-means, STC and Lingo
show Agents-WDC is a better algorithm for web document
clustering in both on-line and off-line scenarios.

The Bayesian Information Criterion (BIC) with cosine
similarity is a good option for web document clustering
because precision and recall both increase when Agents-WDC
algorithm evolve, but in some cases this positive relation fail.

New solutions (agents) generated in Agents-WDC
algorithm based on roulette selection, a traditional n-point
crossover, uniform mutation, and local improvement with k-
means show a high rate of success (around 90% from fifth
iteration) in the evolutionary process.

Agents-WDC uses two document representations models,
initially it uses vector space model in the clustering process
and then it uses full text for the labels creation process. This
combination improves quality of cluster labels and the general
quality of the clustering process.

There follow some suggestions for future work: applying
the model to several datasets (other datasets based on DMOZ,
Google results, Yahoo! results, among others) in on-line and
off-line scenarios; evaluate Agents-WDC using BCubed
Precision and BCubed Recall and compare results with Lingo,
STC and other web document clustering algorithms. Define a
new fitness function for evolutionary algorithms in web
document clustering, using for example genetic programming.

Evaluate TopicSearch alongside other traditional and
evolutionary algorithms for web document clustering; making
use of WordNet to work with concepts (Concept-Document
Matrix) instead of terms (Term-Document Matrix) and
comparing the results; evaluating the entire model with a lot
of users in different contexts; and evaluating the impact of
query expansion over the time.

ACKNOWLEDGMENT
The work in this paper was supported by a Research Grant

from the University of Cauca under Project VRI-2560 and the
National University of Colombia.

REFERENCES
[1] C. Carpineto, et al., "A survey of Web clustering engines," ACM

Comput. Surv., vol. 41, pp. 1-38, 2009.
[2] R. Baeza-Yates, A. and B. Ribeiro-Neto, Modern Information

Retrieval: Addison-Wesley Longman Publishing Co., Inc., 1999.

[3] C. Carpineto, et al., "Evaluating subtopic retrieval methods: Clustering
versus diversification of search results," Information Processing &
Management, vol. 48, pp. 358-373, 2012.

[4] K. Hammouda, "Web Mining: Clustering Web Documents A
Preliminary Review," ed, 2001, pp. 1-13.

[5] A. K. Jain and R. C. Dubes, Algorithms for clustering data: Prentice-
Hall, Inc., 1988.

[6] M. Steinbach, et al., "A comparison of document clustering
techniques," in KDD workshop on text mining, Boston, MA, USA.,
2000, pp. 1-20.

[7] Y. Li, et al., "Text document clustering based on frequent word
meaning sequences," Data & Knowledge Engineering, vol. 64, pp.
381-404, 2008.

[8] Z. Oren and E. Oren, "Web document clustering: a feasibility
demonstration," presented at the Proceedings of the 21st annual
international ACM SIGIR conference on Research and development in
information retrieval, Melbourne, Australia, 1998.

[9] M. Mahdavi and H. Abolhassani, "Harmony K-means algorithm for
document clustering," Data Mining and Knowledge Discovery, vol. 18,
pp. 370-391, 2009.

[10] P. Berkhin, et al., "A Survey of Clustering Data Mining Techniques,"
in Grouping Multidimensional Data, ed: Springer-Verlag, 2006, pp.
25-71.

[11] S. Osiński and D. Weiss, "A concept-driven algorithm for clustering
search results," Intelligent Systems, IEEE, vol. 20, pp. 48-54, 2005.

[12] D. Zhang and Y. Dong, "Semantic, Hierarchical, Online Clustering of
Web Search Results," in Advanced Web Technologies and
Applications, ed, 2004, pp. 69-78.

[13] B. Fung, et al., "Hierarchical document clustering using frequent
itemsets," in Proceedings of the SIAM International Conference on
Data Mining, 2003, pp. 59-70.

[14] G. Mecca, et al., "A new algorithm for clustering search results," Data
& Knowledge Engineering, vol. 62, pp. 504-522, 2007.

[15] F. Beil, et al., "Frequent term-based text clustering," in KDD '02:
International conference on Knowledge discovery and data mining
(ACM SIGKDD), Edmonton, Alberta, Canada, 2002, pp. 436-442.

[16] L. Jing, "Survey of Text Clustering," ed, 2008.
[17] W. Song, et al., "Genetic algorithm for text clustering using ontology

and evaluating the validity of various semantic similarity measures,"
Expert Systems with Applications, vol. 36, pp. 9095-9104, 2009.

[18] L. Xiang-Wei, et al., "The research of text clustering algorithms based
on frequent term sets," in Machine Learning and Cybernetics, 2005.
Proceedings of 2005 International Conference on, 2005, pp. 2352-
2356 Vol. 4.

[19] A. K. Jain, et al., "Data clustering: a review," ACM Comput. Surv., vol.
31, pp. 264-323, 1999.

[20] S. Osiński and D. Weiss, "Carrot 2: Design of a Flexible and Efficient
Web Information Retrieval Framework," in Advances in Web
Intelligence, ed, 2005, pp. 439-444.

[21] X. Wei, et al., "Document clustering based on non-negative matrix
factorization," presented at the Proceedings of the 26th annual
international ACM SIGIR conference on Research and development in
informaion retrieval, Toronto, Canada, 2003.

[22] Z. Zhong-Yuan and J. Zhang, "Survey on the Variations and
Applications of Nonnegative Matrix Factorization," in ISORA’10: The
Ninth International Symposium on Operations Research and Its
Applications, Chengdu-Jiuzhaigou, China, 2010, pp. 317–323.

[23] Z. Geem, et al., "A New Heuristic Optimization Algorithm: Harmony
Search," Simulation, vol. 76, pp. 60-68, 2001.

[24] R. Forsati, et al., "Hybridization of K-Means and Harmony Search
Methods for Web Page Clustering," in WI-IAT '08: IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology, 2008, pp. 329-335.

[25] M. Mahdavi, et al., "Novel meta-heuristic algorithms for clustering
web documents," Applied Mathematics and Computation, vol. 201, pp.
441-451, 2008.

[26] W. Song and S. Park, "Genetic Algorithm-Based Text Clustering
Technique," in Advances in Natural Computation, ed, 2006, pp. 779-
782.

[27] C. Cobos, et al., "Web document clustering based on Global-Best
Harmony Search, K-means, Frequent Term Sets and Bayesian

44Polibits (47) 2013 ISSN 1870-9044

Carlos Cobos, Martha Mendoza, Elizabeth León, Milos Manic, and Enrique Herrera-Viedma

Information Criterion," in 2010 IEEE Congress on Evolutionary
Computation (CEC), Barcelona, Spain, 2010, pp. 4637-4644.

[28] C. Cobos, et al., "Web Document Clustering based on a New Niching
Memetic Algorithm, Term-Document Matrix and Bayesian
Information Criterion," in 2010 IEEE Congress on Evolutionary
Computation (CEC), Barcelona, Spain, 2010, pp. 4629-4636.

[29] C. Manning, et al. (2008). Introduction to Information Retrieval.
Available: http://www-csli.stanford.edu/~hinrich/information-retrieval-
book.html

[30] L. Yongli, et al., "A Query Expansion Algorithm Based on Phrases
Semantic Similarity," presented at the Proceedings of the 2008
International Symposiums on Information Processing, 2008.

[31] S. E. Robertson and K. Sparck-Jones, "Relevance weighting of search
terms," in Document retrieval systems, ed: Taylor Graham Publishing,
1988, pp. 143-160.

[32] C. Cobos, et al., "Algoritmos de Expansión de Consulta basados en una
Nueva Función Discreta de Relevancia," Revista UIS Ingenierías, vol.
10, pp. 9-22, Junio 2011.

[33] Q. H. Nguyen, et al., "A study on the design issues of Memetic
Algorithm," in Evolutionary Computation, 2007. CEC 2007. IEEE
Congress on, 2007, pp. 2390-2397.

[34] A. Webb, Statistical Pattern Recognition, 2nd Edition: {John Wiley &
Sons}, 2002.

[35] S. J. Redmond and C. Heneghan, "A method for initialising the K-
means clustering algorithm using kd-trees," Pattern Recognition
Letters, vol. 28, pp. 965-973, 2007.

[36] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA,
USA: The MIT Press, 1999.

[37] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning: Addison-Wesley Longman Publishing Co., Inc.,
1989.

[38] T. Matsumoto and E. Hung, "Fuzzy clustering and relevance ranking of
web search results with differentiating cluster label generation," in
Fuzzy Systems (FUZZ), 2010 IEEE International Conference on, 2010,
pp. 1-8.

[39] E. Amigó, et al., "A comparison of extrinsic clustering evaluation
metrics based on formal constraints," Inf. Retr., vol. 12, pp. 461-486,
2009.

[40] S. Osiński, "An Algorithm for clustering of web search results,"
Master, Poznań University of Technology, Poland, 2003.

45 Polibits (47) 2013ISSN 1870-9044

TopicSearch - Personalized Web Clustering Engine Using Semantic Query Expansion, Memetic Algorithms and Intelligent Agents

Recommending Machine Translation Output to
Translators by Estimating Translation Effort:

A Case Study
Prashant Mathur, Nick Ruiz, and Marcello Federico

Abstract—In this paper we use the statistics provided by a
field experiment to explore the utility of supplying machine
translation suggestions in a computer-assisted translation (CAT)
environment. Regression models are trained for each user
in order to estimate the time to edit (TTE) for the
current translation segment. We use a combination of features
from the current segment and aggregated features from
formerly translated segments selected with content-based filtering
approaches commonly used in recommendation systems. We
present and evaluate decision function heuristics to determine
if machine translation output will be useful for the translator
in the given segment. We find that our regression models do
a reasonable job for some users in predicting TTE given only
a small number of training examples; although noise in the
actual TTE for seemingly similar segments yields large error
margins. We propose to include the estimation of TTE in
CAT recommendation systems as a well-correlated metric for
translation quality.

Index Terms—Machine translation, computer-assisted transla-
tion, quality estimation, recommender systems.

I. INTRODUCTION

RECENT advances in Statistical Machine Translation
(SMT) have been due to the large availability of parallel

corpora. A natural goal is to apply machine translation to
the computer-assisted translation (CAT) domain to increase
translator productivity. CAT tools typically consist of a
Translation Memory (TM) which stores segments that have
been translated before by the users. When a translator is
translating a new sentence, the sentence is first looked up in
the TM and if there is a fuzzy match (a partial match score
above a given threshold) the CAT tool suggests the translation
in the TM to the translator. In the common scenario where
the TM does not provide any suggestions to the translator, the
translator must translate the segment from scratch.

The aim of CAT tools is to improve the productivity of
translator and to ensure consistency. Integrating SMT system
in a CAT tool has been shown to speed up the translation
process [1]. Machine translation output provides excellent
coverage that can help overcome sparsity in the TM; however,

Manuscript received on December 7, 2012; accepted for publication on
January 11, 2013.

Prashant Mathur and Nick Ruiz are with University of Trento and FBK,
Italy.

Marcello Federico is with FBK, Italy.

MT output can also add additional noise on the screen that
can distract the translator from her task. Ideally, the goal for
SMT in the CAT scenario is to provide machine translation
suggestions only when their quality in order to guarantee an
increase in the user’s productivity for a given segment.

The aim of the EU-funded MateCat1 project is to increase
translator productivity by providing self-tuning, user-adaptive
and informative MT in the CAT scenario. In this paper
we propose the integration of a recommendation system
framework using content-based filtering to suggest when MT
output should be presented on the translator’s screen, based on
the difficulty of the current segment and his previous behavior
on similar segments. We do so by estimating the amount of
effort, as a function of time, to translate the current segment,
given a MT suggestion. Given the estimated time to translate a
sentence, we attempt to define a decision function to determine
if the MT output will increase the productivity of the translator.

This paper is organized as follows. In Section II we describe
related work in the field of quality estimation. Section III
outlines the conditions of a preliminary field test conducted
at the beginning of the MateCat project. Section IV describes
the methodology used to estimate the time to edit a sentence
(TTE). Our experiment and results using the field test dataset
are described in Sections V and VI, respectively. Finally, we
discuss the results of the experiment and provide suggestions
for future work.

II. PREVIOUS WORK

Automatic Quality Estimation (QE) for Machine Translation
(MT) seeks to predict the usefulness of MT outputs without
observing reference translations. QE can be cast as a machine
learning problem whose goal is to predict a quality score based
on one or more metrics, including human post-editing effort.

A baseline regression system was constructed in [2] for
the WMT 2012 Quality Estimation shared task that uses
MT and surface-level features derived from a training set to
predict a user’s perceived level of post-editing effort for newly
translated sentences. Levenshtein features are used in [3]
which measure the distance between the current sentence with
each of the closest entry in the training corpus. Low edit

1http://www.matecat.com

47 Polibits (47) 2013ISSN 1870-9044; pp. 47–53

distances imply that the current sentence is close to the training
set and thus its quality is expected to be high.

Sentences in a development set are ranked by their
sentence-level BLEU scores [4] and divided the development
set into quartiles in [5]. Inspired by TrustRank [6], additional
regression features are added to measure the distance between
the current sentence and the high or low quality quartile sets
in the development data. The distance is measured via n-gram
matches through a modified BLEU score and is evaluated in
both the source and the target language directions.

The prediction of word- and sentence-level MT errors are
treated as a sequence labeling task in [7], using alignment,
agreement, and POS-based features. Each token is labeled
by the type of error occurring (e.g. insertion, deletion,
substitution, or shift).

Quality estimation for MT is treated as a binary
classification problem for computer-assisted translation in [8].
They predict the usefulness of MT output over translation
memory recommendations in terms of the number of
words edited to match a reference translation. This metric
is known as the translation error rate (TER) [9]. The
system also provides confidence scores based on posterior
classification probabilities. A MT output is recommended if
its corresponding TER score is lower than that of a TM
suggestion.

Due to the nature of the field test, we treat the SMT system
as a black box and cannot use SMT-based features in our
model. However, we consider the reverse translation fuzzy
match score as a feature in our model.

III. FIELD TEST

The EU-funded project MateCat was launched in early
2012 with the aim to integrate Statistical Machine Translation
systems such as Moses [10] with a state-of-the-art CAT tool
to improve translator productivity. The goal of MateCat is to
seamlessly integrate a MT engine as a back-end process inside
the CAT tool. Translators will receive translations either from
TM matches or from the MT engine. One of the aims of the
project is to recommend MT outputs if the machine translation
requires less post-editing than the translation memory.

A feasibility study was conducted in [1] as a field test which
integrated a production-quality MT Engine (namely, Google
Translate2) in SDL Trados Studio3. Twelve professional
translators worked on real translation projects covering the
information technology and legal domains. Documents were
translated both from English to German and English to
Italian. The experiment was held in two parts. In the first
part, a baseline was established by providing translators with
only TM matches for suggestions. We refer to this baseline
as TM experiments. In the second part MT outputs were
viable alongside the TM matches. We refer to these as MT
experiments. To measure the productivity of translators two

2http://translate.google.com
3http://www.trados.com/en/

indicators were used: the post editing speed which is the
average number of words processed by translator in one hour,
and the post editing effort which is the average percentage of
word changes applied by the translator on each suggestion.
The results from the experiment show that providing MT
recommendations significantly increased productivity across
all users.

IV. METHODOLOGY

Modern recommendation systems typically use two
mechanisms: content-based and collaborative filtering. In
content-based filtering an item is recommended to a user based
on its similarity between items she previously observed. The
user’s judgments on previously seen items are stored in a user
profile, which may also contain additional user information.
An item profile is constructed based on a set of characteristics
or attributes describing it. The user’s profile is combined with
item profiles to find new items that a user may prefer. In a CAT
scenario, “item profiles” of previously translated segments can
be aggregated and used to predict a user’s judgment on the
quality of a machine translation in a future segment.

In collaborative filtering, a given user is compared
against a collection of other users with similar profiles
to provide recommendations for new items, even if the
items recommended are dissimilar to those preferred by the
user in the past. Such filtering increases the pool of items
that can be recommended to a user. In a CAT scenario,
translation recommendations could be provided based on the
previous translations of other users. Unfortunately, such an
approach is not useful in a professional translation scenario,
where translators must maintain consistency within their own
projects. Additionally, a careful look at the data provided in
the MateCat field test shows that the translators behave quite
differently. However, such an approach might be useful for
crowd-sourced or community-based translations with a large
number of amateur translators.

CAT systems aim at increasing the productivity of the
translators by providing translation suggestions, usually in
the form of a TM. It is a necessity that the translations
recommended from the MT system are good. If the cost of
post-editing a translation is higher than translating the segment
from scratch then it decreases the productivity of the user.
An ideal recommendation system suggests a translation only
when the cost of post-editing is low. Thus, we only use
content-based filtering, treating each translation segment as an
item to be compared against segments previously translated
by the same user. We combine features drawn from the
item profile of the current segment along with a collection
of item profiles of similar segments to predict the time
required to translate the segment. We call this the time to edit
(TTE). TTE is one of several indicators for translation effort.
If additionally providing MT outputs does not significantly
improve the translation effort over scenarios where only the
TM is available, then it is not useful to recommend the MT
output to the translator.

48Polibits (47) 2013 ISSN 1870-9044

Prashant Mathur, Nick Ruiz, and Marcello Federico

In [8], most of the features for translation recommendation
come directly from the SMT models (e.g. phrase translation
scores, language model scores). These features are combined
with system independent features such as language model
perplexity scores on target side, fuzzy match scores and
lexical translation scores from a word alignment model [11].
However, in this work we are restricted to the features used in
the field test. The underlying MT engine and language models
used by Google Translate are unavailable for analysis. Instead,
we used features in the MateCat field test, such as word count,
TTE on a sentence, match percent (percent match between a
TM and the current segment), and the after match score (how
close the suggestion and translation are).

However, there were several limitations in the original field
test. The translators worked remotely on a client system at
their respective locations and connected to a centralized server
which made it hard to capture the user/translator focused
features such as keystrokes, the actual time to translate a
sentence, and whether the translator actually used the MT
output or translated directly from scratch. In the absence of
such features we use a number of aggregated features obtained
from the similar segments to the current one being translated
(see section V-B). We borrow the idea of a pseudo fuzzy match
score from [8]. However, instead of Levenshtein distance we
use TER. There are two kinds of features, one representing
the statistics of current segment (current features) and the one
representing the statistics of the similar segments (aggregated
features). Both sets of features are taken from the TM and MT
outputs.

Table I provides a list of the features considered in this
paper. Features such as the source word count (WCSR) and
the TER of the reverse-translated MT output against the
source text (TERSR) are computed on the current segment.
Several other features are computed on the collection of similar
TM and MT segments extracted by means of content-based
filtering. Aggregated features provide summary statistics on
the TTE and time for word (TFW, computed as TTE divided
by segment word count), as well as an estimate on the
translation error rate (TERTG) and word counts on the MT
and post-edited outputs (WCMT and WCPE , respectively).
Each summary statistic yields three features, one for the
respective TM and MT aggregates and an additional feature
for their difference.

V. EXPERIMENT

We perform our experiment on the English to German
translation of segments in the information technology domain.

A. Preprocessing

As in [1], segments where the processing time per word was
less than 0.5 seconds or greater than 30 seconds were removed
as outliers. Perfect (100%) TM matches were removed. After
filtering, the data set contains a total of 3670 segments,
subdivided among four users, as listed in Table II.

TABLE I
FEATURES USED IN THIS EXPERIMENT. CERTAIN FEATURES ARE DERIVED

FROM THE CURRENT SEGMENT, WHILE OTHERS ARE COMPUTED AS AN
AVERAGE OVER SIMILAR SEGMENTS. WORD COUNT (WC) FOR SOURCE

(SR), MT, AND POST-EDITED (PE) SEGMENTS; TTE AND TFW, AND TER
ON TARGET (TG) AND SOURCE (SR) SEGMENTS.

Segment Current Similar
WCSR Y Y
WCMT N Y
WCPE N Y
TFW N Y
TTE N Y
TERTG N Y
TERSR Y N

TABLE II
SEGMENTS PER USER IN THE EN>DE IT DOMAIN CAT SCENARIO. THE

DATASET CONSISTS OF 3670 SEGMENTS.

User TM Segments MT Segments
User 1 487 486
User 2 498 481
User 3 332 486
User 4 490 410

Data is split as follows: the first 10% of each split
is reserved as a burn-in to accumulate user statistics for
extracting similar segments. The remainder of the data is
split into 11 folds in a round-robin fashion to minimize
the effects of immediately translated segments (i.e., seg1 →
fold1, seg2 → fold2, ..., seg12 → fold1, etc.). Ten folds are
used for cross-validation purposes to evaluate the utility of the
regression model. The folds are later combined and used to
evaluate the final held-out set to provide a recommendation to
the user.

B. Extracting similar segments

In order to gather statistics on features not observable in the
current segment (see Table I), we compute aggregated features
from the statistics of similar segments, both in our TM and MT
experiments. We rely on the popular cosine similarity metric
using unigram features from the source text for identifying
similar segments. Given source language bag-of-word features
for segments A and B, cosine similarity is defined as:

similarity =

n∑
i=1

Ai ×Bi√
n∑

i=1

(Ai)2 ×
√

n∑
i=1

(Bi)2

(1)

In order to simulate the computer-assisted translation
scenario, we only compute similarity scores on segments that
would appear in a user’s “translation cache” – e.g., segments
that were already translated by the user at a given point in the
TM or MT field test experiments. Since the purpose of the
experiment is to evaluate the utility of MT suggestions, the
cosine similarity is always calculated from a MT segment to
any previous segments.

49 Polibits (47) 2013ISSN 1870-9044

Recommending Machine Translation Output to Translators by Estimating Translation Effort: A Case Study

In the cross-validation scenario, each segment in the training
fold draws similar segments from the burn-in set and the
previous segments in the training set. Formally, for foldi,
similar segments are drawn from the previous segments in a
candidate pool defined by {burn-in, fold−i} where −i refers to
the cross-validated folds not labeled foldi. The test set draws
its similar segments from the candidate pool {burn-in, foldi}.

Average similarity scores per user under cross-validation
fold 3 are listed in Table III. Given that the average similarity
score (simavg) per user is low, we select candidate segments
with a similarity score higher than simavg , as an arbitrary
segment is semantically unrelated to a given segment. From
the remaining candidates, we establish a heuristic that selects
the candidates within 10% of the segment with the highest
similarity (selmax), or those candidates whose score is higher
than the average of the selected candidates (selavg). In other
words, we aggregate the similarity scores of segments whose
scores are greater than max(selmax − 0.1, selavg) from the
candidate pool.

The aggregated features described in the previous section
are computed by averaging the feature values of the similar
segments within the TM and MT experiments, respectively.
In some cases, no candidates are selected for the TM or
MT aggregation. In these cases, we substitute with average
statistics for the particular user across all segments in the
training set.

C. Predicting time to edit

We train linear regression models, combining features of
the current segment with statistics on the user’s behavior
on similar segments and call this the Aggregated regression
model. Similarly, we build baseline regression models just with
features from current segment (e.g. WCSR, TERSR). Using a
10-fold cross validation strategy, we train 10 regression models
for each user based on the training set. Each model is designed
to predict the TTE for a given segment. We use the linear
regression classes provided by the Weka open-source machine
learning toolkit [12] to orchestrate our experiment. Our linear
regression models use M5 attribute selection [13] which
incrementally removes features with the smallest coefficient.
A ridge regularization parameter is fixed to 1.0 × 10−8. The
regression results are averaged across each fold and reported
in Section VI. For the final MT output recommendation, we
train a model using all the training folds and evaluate on our
held-out test set.

D. Suggesting MT output

After predicting the TTE values on a held-out test set, we
recommend whether or not to present MT output to the user
by comparing the TTE of the current segment against the TTE
of segments with similar word counts in the MT and TM
experiments. Given a segment s and its predicted TTE x, we
evaluate the number of standard deviations of x from µ̂MT and
µ̂TM , the bootstrap mean of the TTE values in the MT and

TABLE IV
AVERAGE PERFORMANCE OF AGGREGATED AND BASELINE SYSTEMS

AFTER 10-FOLD CROSS-VALIDATION FOR LINEAR REGRESSION MODELS
TRAINED FOR EACH USER. AVERAGE NUMBER OF INSTANCES IN EACH

FOLD IS GIVEN BY Instances. MEAN ABSOLUTE ERROR (MAE) AND ROOT
MEAN SQUARE ERROR (RMSE) ARE IN SECONDS.

Baseline Aggregated
User Instances Corr. MAE RMSE Corr. MAE RMSE
1 38.9 0.6128 31.94 45.70 0.6300 31.16 44.87
2 38.6 0.6371 25.79 47.35 0.6362 25.82 48.47
3 38.6 0.5102 18.39 38.58 0.4672 19.56 39.47
4 33.0 0.5293 13.34 25.72 0.4947 14.29 26.70

TM experiments for segments with a source-side word count in
the range [WCSR(s)− 1,WCSR(s)+1]. Thus, the following
criterion (inspired by the Z-score) is defined for recommending
MT output:

f(x) =

{
1 : |(x− µ̂MT) /σ̂MT | < |(x− µ̂TM) /σ̂TM |
0 : otherwise

(2)
σ̂∗ is the standard deviation of segments in the corresponding
sample. We use the bootstrap mean as a robust mean estimate
to account for outliers.

VI. RESULTS

The results for cross-validation and the final evaluation are
reported below.

A. Regression results

1) Cross validated models: Average regression results
along with baseline results per user are reported in Table IV.
While Users 3 and 4 have a lower correlation coefficient, the
Root Mean Square Error (RMSE) remains relatively low with
respect to Users 1 and 2. In particular, User 4’s regression
curve implies that many of the model features do not contribute
to the predictive power of the model. In fact, a baseline system
using only two features performs better than an aggregated
system for all the users except User 1. This is likely due to
the fact that there are few samples in our data set available
for aggregation. The following features have a significant
contribution to the regression model: current WCSR, δWCSR

for similar TM and MT segments, and δWCTG.
2) Final models: Regression results of the final test per user

are reported in Table V and regression coefficients for each
attribute are reported in Table VI. The correlation coefficients
are higher than those of the cross-validation experiment.

Here, the aggregated system performs better than baseline
only for Users 1 and 3. The majority of errors occur in
segments with high word counts, or “outlier” cases where
either an identical match appears in the translation memory or
the user took an abnormally long amount of time to translate
a segment.

50Polibits (47) 2013 ISSN 1870-9044

Prashant Mathur, Nick Ruiz, and Marcello Federico

TABLE III
SIMILAR SEGMENT EXTRACTION FOR TWO RANDOMLY SELECTED SEGMENTS UNDER CROSS-VALIDATION FOLD 3. CANDIDATES MUST HAVE A

SIMILARITY SCORE ABOVE THE USER’S AVERAGE SIMILARITY SCORE. TO BE SELECTED, CANDIDATES MUST BE WITHIN 0.1 OF THE MOST SIMILAR
SEGMENT IN THE POOL SELmax OR THE CANDIDATE AVERAGE SELavg – WHICHEVER IS GREATER.

User Seg. Exp. Candidates Selected selavg simavg selmin selmax

User 3 11710 MT 47 3 0.327 0.227 0.236 0.530
User 3 11710 TM 65 21 0.307 0.218 0.221 0.447
User 4 13421 MT 49 5 0.347 0.227 0.230 0.542
User 4 13421 TM 261 14 0.369 0.229 0.230 0.607

TABLE VI
COEFFICIENTS FOR THE LINEAR REGRESSION MODEL FEATURES LISTED IN TABLE I. FEATURES FOR THE CURRENT SEGMENT ARE LABELED “CURR”.

FEATURES COMPUTING THE DIFFERENCE BETWEEN THE MT AND TM AGGREGATIONS ARE LABELED “DIFF”.

User WCSR WCTG WCPE

Curr TM MT Diff TM MT Diff TM MT Diff
1 5.485 -3.580 -2.232 -2.850 -1.419 3.869 0.000 4.584 -2.908 4.646
2 5.398 8.582 -7.832 11.014 -5.526 3.136 -5.515 -2.570 3.949 -3.382
3 3.516 1.427 -5.051 0.000 -1.114 1.849 0.000 -1.634 3.793 0.000
4 2.233 0.000 0.000 -3.156 0.000 0.000 0.000 0.000 0.000 3.061

User TFW TTE TERTG TERSR

Intercept TM MT Diff TM MT Diff TM MT Curr
1 -25.742 0.000 1.574 0.000 -0.134 0.314 0.242 0.158 0.000 0.144
2 -21.001 0.000 2.580 0.000 -0.387 0.412 0.483 0.000 0.000 0.000
3 -16.399 0.000 1.570 1.210 0.000 -0.167 -0.223 0.134 0.000 0.000
4 5.263 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TABLE V
PERFORMANCE OF BASELINE VERSUS AGGREGATED SYSTEM AFTER
FULL TRAINING OF LINEAR REGRESSION MODELS FOR EACH USER,

EVALUATED ON THE TEST SET. CORRELATION (CORR.), MEAN ABSOLUTE
ERROR (MAE), ROOT MEAN SQUARE ERROR (RMSE).

Baseline Aggregated
User Instances Corr. MAE RMSE Corr. MAE RMSE

1 40 0.6551 29.54 47.19 0.6682 28.16 46.31
2 38 0.7359 23.57 33.20 0.7290 23.13 33.81
3 40 0.7001 13.01 17.19 0.7466 12.53 16.92
4 34 0.6702 11.81 15.81 0.6270 11.95 16.49

a) Important features.: For all users, the average
time-for-word (TFW) feature for similar TM segments was
not useful. In addition, the average TER for MT segments
and the average TER difference were not used. Naturally,
the word count of the current segment was proportional
to the TTE. Likewise, the average word counts and their
computed difference were significant features. The reverse
TER score (TERSR) was not significant. All other features
were significant.

b) Example predictions.: Table VII shows time-to-edit
(TTE) prediction results for User 3. While IDs #15, #18, #19
have a relatively good error bound, outliers such as #32 drive
up the RMSE. Incidentally, the MT output provided for the 5-
word source segment in #32 was “Die andere MLV ausgewählt
wird.”, which only requires one word swap operation.

While the MT output aligns closely with the user’s draft
translation in ID #21, the regression model provided an much
higher estimate. In this example, a total of 170 MT candidates
with similarity scores above the user average (22.65%) were
available, providing a group average of 38.46%. However,
only one segment was selected (94.28% similar). No other

candidates are within 10% of the highest candidate; thus, the
MT statistics were unreliable. We further note that of 1488
training instances, 512 segments had only one similar MT
segment in the aggregation; 75 segments had none (using
global user averages instead).

B. Recommendation based on time to edit
Given the TTE predictions from our regression models,

we provide recommendations on whether to provide MT
suggestions to the translator. Figure 1 lists the confusion
matrices for each user’s regression model and Table VIII lists
the precision, recall, and F-measure for each user.

Ta Fa

Te 21 6
Fe 8 5

(a) User 1

Ta Fa

Te 14 8
Fe 6 10

(b) User 2

Ta Fa

Te 25 7
Fe 5 3

(c) User 3
Ta Fa

Te 9 10
Fe 6 9

(d) User 4

Fig. 1. Confusion matrices for each user. Ta and Fa correspond to the actual
values. Te and Fe correspond to the estimated values.

TABLE VIII
PRECISION, RECALL, F-MEASURE FOR EACH USER

User Precision Recall F-Measure
1 77.77 72.41 74.99
2 63.63 70.00 77.13
3 78.25 83.33 80.71
4 47.36 60.00 52.93

Understandably, due to the lack of useful features in User
4’s regression model, the overall MT suggestion results are

51 Polibits (47) 2013ISSN 1870-9044

Recommending Machine Translation Output to Translators by Estimating Translation Effort: A Case Study

TABLE VII
SAMPLE TIME-TO-EDIT A SENTENCE (TTE) PREDICTIONS FOR USER 3. “MT?” REFERS TO THE ACTUAL/ESTIMATED RESULT OF THE CLASSIFICATION

MODEL AFTER APPLYING THE DECISION FUNCTION DEFINED IN (2).

ID Segment Translation WC TTE Est TTE Error MT?
15 In the License Allocations tab you can

explicitly add a new eQube-BI TcRA
context that can connect to the current
license server.

In der Registerkarte Lizenzzuweisung können
Sie explizit einen neuen eQube - BI TCRA
Kontext hinzufügen, der sich mit dem aktuellen
Lizenzserver verbinden kann.

22 66 70.12 4.12 1/1

18 You need to assign roles to users so that
they can perform certain operations.

Sie müssen Rollen Benutzern zuweisen, sodass
sie bestimmte Operationen durchfähren können.

14 12 10.48 -1.52 1/1

19 Add Role Rolle hinzufügen 2 11 10.99 -0.01 0/0
20 Click Submit, if you want to submit the

details you entered.
Klicken Sie auf Senden, wenn Sie die Details
übermitteln möchten, die Sie eingegeben haben.

11 20 26.97 6.97 1/0

21 Click the role on the left side of the
screen, to which you want to assign
operations.

Klicken Sie auf die Rolle auf der linken Seite
des Bildschirms, der Sie Operationen zuweisen
möchten.

17 17 36.94 19.94 1/1

32 The other MLV gets selected. Die andere MLV wird ausgewählt. 5 66 18.64 -47.36 0/1

low. For the other three users, we report higher F-measures that
suggest a correlation between the estimated and actual TTE
scores in terms of our goodness measure. However, what does
this say about our goodness measure? The right-most column
of Table VII lists the actual vs. estimated predictions for the
example segments translated by User 3. ID #20 consists of 11
words having a TTE difference of approximately 7 seconds.
Looking more closely, for User 3, µ̂TM < µ̂MT , which
implies that MT is not useful for any segments of this length
(µ̂TM = 2.47, σ̂TM = 1.51, µ̂MT = 2.69, σ̂TM = 3.80). This
underlies the importance of significance testing as one of the
missing components in our decision function.

CONCLUSION AND FUTURE WORK

In conclusion, we address the problem of quality estimation
for machine translation in the CAT scenario by constructing
regression models tailored to each translator in order to
estimate the productivity of a user. We estimate user
productivity in terms of the time taken to edit a translation
(TTE). We combine features from the current segment with
aggregated features from similar segments in two field test
experiments. We find that a trained regression model predicts
TTE reasonably well given a limited data set drawn from the
preliminary MateCat field test outlined in [1], with exceptions
explained by user inconsistencies and limitations in the data
captured.

The estimated TTE values for each segment in our test
set is compared against the mean TTE values for similarly
long segments in the TM and MT sub-experiments. Segments
whose TTE is closer to the MT experiment’s mean than
its TM counterpart are judged to indicate that suggesting
machine translation output will improve user productivity. We
evaluate this decision function against the actual TTE values to
measure the consistency of the regression model. After careful
evaluation, we see that this heuristic is deficient in accurately
suggesting MT output to the translator in cases where the
population means of similarly long TM and MT segments are
close. As such, the choice of a decision function should be
revisited.

One potential source of problems in the regression model is
that each segment contains a limited number of content words.
In practice, the content words are the biggest determiners
of coherence in a text. Thus, we propose to add additional
features based on the content words to our regression model.
Additionally, we propose to add the average similarity scores
and the average word length between the current segment and
the aggregated TM and MT segments.

ACKNOWLEDGMENTS

This work is partially funded by the European Commission
under the FP7 project MateCat, Grant 287688. The authors
wish to thank Georgia Koutrika for her valuable suggestions
in this experiment.

REFERENCES

[1] M. Federico, A. Cattelan, and M. Trombetti, “Measuring User
Productivity in Machine Translation Enhanced Computer Assisted
Translation ,” in AMTA 2012, San Diego, California, October 2012.

[2] L. Specia, M. Turchi, Z. Wang, J. Shawe-Taylor, and C. Saunders,
“Improving the confidence of machine translation quality estimates,”
in Machine Translation Summit XII, Ottawa, Canada, 2009.

[3] C. Buck, “Black box features for the WMT 2012 quality estimation
shared task,” in Proceedings of the Seventh Workshop on Statistical
Machine Translation. Montreal, Canada: Association for Computational
Linguistics, June 2012.

[4] C.-Y. Lin and F. J. Och, “Orange: a method for evaluating automatic
evaluation metrics for machine translation,” in Proceedings of Coling
2004. Geneva, Switzerland: COLING, Aug 23–Aug 27 2004, pp. 501–
507.

[5] R. Soricut, N. Bach, and Z. Wang, “The SDL Language Weaver Systems
in the WMT12 Quality Estimation Shared Task,” in Proceedings of
the Seventh Workshop on Statistical Machine Translation. Montréal,
Canada: Association for Computational Linguistics, June 2012, pp.
145–151. [Online]. Available: http://www.aclweb.org/anthology/W12-
3118

[6] R. Soricut and A. Echihabi, “TrustRank: Inducing Trust in Automatic
Translations via Ranking,” in ACL, 2010, pp. 612–621.

[7] N. Bach, F. Huang, and Y. Al-Onaizan, “Goodness: a
method for measuring machine translation confidence,” in
Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies -
Volume 1, ser. HLT ’11. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2011, pp. 211–219. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2002472.2002500

52Polibits (47) 2013 ISSN 1870-9044

Prashant Mathur, Nick Ruiz, and Marcello Federico

[8] Y. He, Y. Ma, J. van Genabith, and A. Way, “Bridging SMT and TM
with Translation Recommendation,” in Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics. Uppsala,
Sweden: Association for Computational Linguistics, July 2010, pp.
622–630. [Online]. Available: http://www.aclweb.org/anthology/P10-
1064

[9] M. Snover, B. Dorr, R. Schwartz, L. Micciulla, and J. Makhoul, “A
study of translation edit rate with targeted human annotation,” in In
Proceedings of Association for Machine Translation in the Americas,
2006, pp. 223–231.

[10] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico,
N. Bertoldi, B. Cowan, W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar,
A. Constantin, and E. Herbst, “Moses: Open source toolkit for statistical

machine translation,” in ACL, 2007.
[11] P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, and R. L. Mercer, “The

mathematics of statistical machine translation: Parameter estimation,”
Computational Linguistics, vol. 19, no. 2, pp. 263–312, 1993. [Online].
Available: http://aclweb.org/anthology-new/J/J93/J93-2003.pdf

[12] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” SIGKDD Explor.
Newsl., vol. 11, no. 1, pp. 10–18, Nov. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1656274.1656278

[13] J. R. Quinlan, “Learning with continuous classes,” in Proceedings of
the 5th Australian Joint Conference on Artificial Intelligence. World
Scientific, 1992, pp. 343–348.

53 Polibits (47) 2013ISSN 1870-9044

Recommending Machine Translation Output to Translators by Estimating Translation Effort: A Case Study

Abstract—Movie scripts are a rich textual resource that can be
tapped for movie content analysis. This article describes a
mechanism for fragmenting a sequence of movie script dialogue
into scene-wise groups. In other words, it attempts to locate scene
transitions using information acquired from a sequence of
dialogue units. We collect movie scripts from a web archive.
Thereafter, we preprocess them to develop a resource of
dialogues. We feed the dialogue sequence from a script to a
Genetic Algorithm (GA) framework. The system fragments the
sequence into adjacent groups of dialogue units or output
‘scenes’. We use SentiWordnet scores and Wordnet distance for
dialogue units to optimize this grouping so that adjacent scenes
are semantically most dissimilar. Then we compare the resulting
fragmented dialogue sequence with the original scene-wise
alignment of dialogue in the script.

Index Terms—Dialogue, genetic algorithm, movie script,
scene.

I. INTRODUCTION
ITH loads of digital movies being consumed online,
movie search has become an important concern in the

information retrieval domain. A lot of studies have reported
extraction of semantically meaningful information from
movie data [1–4]. Such information is useful in browsing,
searching, and genre classification. Feature-length movies
usually have extensive lengths. This makes movie information
search with sole aid of audio-visual data a daunting task.
Therefore, movie search mostly relies on textual metadata
associated with movies such as title, keywords, and plot.

In general, a movie includes certain textual information
such as subtitles and annotations. In addition, movie scripts
provide a wealth of information about the dialogue,
characters, story, setting and action in movies. They are
instrumental in bringing the filmmaker’s imagination to life.
Most of the movie scripts conform to a set of semi-regular
formatting conventions (www.screenwriting.info). These
standard terms and conventions can be reaped in order to
extract useful elements from scripts.

Scene boundary detection is a fundamental research area

Manuscript received December 15, 2012. Manuscript accepted for
publication January 11, 2013.

Amitava Kundu and Sivaji Bandyopadhyay are with the Department of
Computer Science & Engineering, Jadavpur University, Kolkata-700032,
India (e-mail: amitava.jucse@gmail.com, sivaji_ju_cse@yahoo.com).

Dipankar Das is with the Department of Computer Science & Engineering,
National Institue of Technology, Meghalaya, Laitumkhrah, Shillong-793003,
Meghalaya, India (email: dipankar.dipnil2005@gmail.com).

which allows navigating movies with semantic ways. A movie
consists of a thousand of shots and hundreds of thousands of
frames. A scene is a set of shots and a boundary of one of
these shots becomes a scene boundary. A number of studies
have attempted scene boundary detection that mainly analyzes
visual features and group shots according to the visual shot
similarity [5], [6]. Scene boundary detection has also been
attempted with the aid of scripts and subtitles. The script-
subtitles alignment mechanism has been used in [7–9] for the
purpose. It may be mentioned in this context that a script,
unlike its subtitle counterpart does not convey any
information about the time period in the movie.

Crafted aspects of movie dialogue are useful as they are
authored deliberately to convey feelings and perceptions of
the characters portrayed [2], [3]. Additionally, the screenplay
specifies the emotion of utterances with psychological state
descriptors. The current article describes a method of
detecting scene boundaries/transitions from movie script
dialogues. For the purpose, we have prepared textual resource
containing structured information from movie scripts. Scripts
available online have been utilized for the purpose. For the
experiments, each script has been considered a sequence of
dialogue units only. Then an attempt has been made to group
the dialogue units scene-wise, as they would have appeared in
the movie.

 Our method segments the sequential dialogue units based
on their changing semantic content and affect. It fragments the
sequence of dialogue units in such a fashion that consecutive
groups/clusters of dialogue text are most ‘dissimilar’,
semantically and affect-wise. A scriptwriter frames his scenes
carefully to narrate his story as per his intentions. We have
assumed that each scene he writes is a coherent entity. Since
we have chosen to use dialogue only, our notion of a scene for
this task has been that a ‘scene’ is a dialogue sequence which
sticks together semantically and sentiment-wise and it is
somewhat different in the same sense from its neighboring
‘scenes’. We have formulated this task as an optimization
problem and adopted a Genetic Algorithm (GA) approach to
this head. Genetic Algorithms (GAs) are a class of adaptive,
randomized search and optimization techniques guided by
principles of natural evolutions and genetics [10], [11]. This
being fundamentally an optimized segmentation task, GA
seemed to be most appropriate for our purpose.

The rest of the paper is structured as follows. Section II
provides the rudiments of movie scripts and a detailed
description of resource preparation. Section III describes in

Scene Boundary Detection from Movie
Dialogue: A Genetic Algorithm Approach

Amitava Kundu, Dipankar Das, and Sivaji Bandyopadhyay

W

55 Polibits (47) 2013ISSN 1870-9044; pp. 55–60

detail how Genetic Algorithm has been incorporated in our
experiments. Section IV provides the results and observations.
Finally, we summarize and present the future directions in
Section V.

II. RESOURCE PREPARATION
Most of the feature-length films are produced with the aid

of scripts [12] or screenplays. The script presents a detailed
vision of the story, settings, dialogues, situations and actions
of a film. It gives the filmmakers, the actors and the crews the
necessary assistance in bringing the intended situation to life.
Thus it can be looked upon as a rich resource that provides
vivid textual descriptions of semantic objects within a film.

The Internet Movie Script Database (IMSDb; www.imsdb.
com) is a huge online repository of movie scripts. Hundreds
of movie scripts, coming straight from the filmmakers, are
available for download. In the present task, scripts were
collected from the above mentioned database but the collected
scripts were subjected to some necessary preprocessing where
the scenes were separately identified and stored in a structured
format. The following subsection provides a general overview
of the elements in a film script followed by the details of
preprocessing steps.

A. Highlights of a Movie Script
As mentioned above, a movie script delineates the story,

character, setting, action and dialogue of a film [9], [12].
Additionally, the camera directions and shot boundaries are
also included. The script may go through a number of
revisions prior to production of the movie. Often, after all the
shots have been edited the resulting movie may not conform
to all the minute details of the original script.

In general, the actual content of a script follows a semi-
regular format as shown in Figure 1, which shows a snippet of
script from the movie Godfather-II. In a script, a scene starts
with the slug line which establishes the physical context of the
action that follows. It indicates whether a scene takes place
inside or outside (INT or EXT), the name of the location (e.g.
‘THE CHURCH PLAZA’), and can potentially specify the
time of day (e.g. DAY or NIGHT). Important people and key
objects are usually highlighted by capitalizing their names.

The bulk of a script is comprised of dialogue description.
Actions of characters are described along with the dialogues
for each character. Dialogues have the character name
(usually in all caps) followed by the dialogue text. An
optional (V.O.) or (O.S.) may follow the character name
indicating that the speaker should be off-screen (V.O. stands
for a “Voice Over”). In most scripts, dialogue actions are
clearly separated from action and camera directions by
enclosing the non-dialogue descriptions in brackets. Usually
scarce, parenthetical directives convey phenomena such as
inflection or mood. An example of a dialogue unit follows:

GARDNER: (a little nervous) I've heard a lot about you,
Mr. Corleone.

Fig. 1. Portion of a screenplay of the film Godfather-II

Fig. 2. Snippets of a resource file showing a typical scene from Godfather-II
screenplay

Fig. 3. Snippets of a resource file showing the dialogues of the scene from

Godfather-II shown in Fig. 2.

B. Preprocessing of scripts
As mentioned already, movie scripts are written in a semi-

regular format. Variety of formats makes preprocessing a
challenging task. To accomplish our experiments, we needed
to prepare a structured resource from scripts so that we could
evaluate the success of our scene boundary detection
algorithm later on. Using knowledge of the usual anatomy of
movie scripts outlined in the above subsection, the

56Polibits (47) 2013 ISSN 1870-9044

Amitava Kundu, Dipankar Das, and Sivaji Bandyopadhyay

information pertaining to different scenes has been identified.
In each of the sets of resource files, one for each script, the
scenes have been stored in a structured format, as indicated in
Figure 2. A scene sets off with the scene heading and the
following line describes either a dialogue or an action. Each
dialogue turn starts with the name of the speaker in capitals
followed by the text. An action starts off with the word
“CONTEXT” and describes what is going on in the scene.
Each scene is separated from the following and the preceding
ones by blank lines. A significant amount of manual labor has
been invested in making necessary refinements and
corrections before storing the resource in the required
structured format.

Additionally, another set of resource files where scene-wise
dialogues are stored have been prepared. Here dialogues from
different scenes are separated with blank lines. All context
information and scene headings have been excluded. These
files have been prepared so that a script can later on be
considered as a sequence of dialogue units without any
knowledge of scene boundary (see Figure 3). However, scenes
without dialogue were also abundant. They have been thus
ignored altogether.

III. SYSTEM FRAMEWORK

In the experimentation, each script has been considered
merely as a sequence of dialogue units excluding the context
information (and even parenthesized directives).

Our objective was to detect the scene transitions looking at
a sequence of dialogue texts. A close manual examination
revealed abrupt changes in overall topic and affect across
dialogues from consecutive scenes in many cases. This
observation motivated us to take an attempt for detecting
scene transitions. We have incorporated a genetic algorithm
approach for the purpose. Figure 4 and Figure 5 illustrate the
scheme and convey the objective.

A. The Genetic Algorithm Approach
Genetic Algorithm (GA) is a search heuristic that mimics

the process of natural evolution. GAs belong to the larger
class of Evolutionary Algorithms (EA), which generate
solutions to optimization problems using techniques inspired
by natural evolution: crossover, mutation and selection.

In the present work, the challenge is to frame the task of
detecting scene boundaries as an optimization problem. As
mentioned above, the changes in topic or overall affect of
dialogues have often been observed across consecutive
scenes. Therefore, we have made a principal assumption that
dialogues from consecutive scenes are “dissimilar” in some
sense. The main idea is to segment the sequence of dialogue
units into scenes in such a way that makes the consecutive
dialogue groups as “dissimilar” as possible. In order to
implement GA, we have utilized the Java Genetic Algorithms
and Programming Package (JGAP version 3.6.2), an open-
source Java based tool.

Fig. 4. The basic objective of our scheme. The input is a sequence of dialogue
text as spoken in sequence by characters in film; D1, D2, D3…. The system

outputs a scene-wise grouping of dialogue units. A group can be seen as set of
dialogue units belonging to a particular scene

1) Encoding.
As a genetic algorithm applies to encoded candidate

solutions or chromosomes, before one can proceed, an
encoding technique of chromosomes has to be chalked out.
We have devised a binary encoding technique for the purpose
where a chromosome is a string of ‘0’s and ‘1’s. As already
mentioned, we have treated a script merely as a sequence of
dialogue units. If we consider a script with n dialogue units, in
our scheme, each chromosome is a binary string of length n-1.
The encoding is such that a ‘1’ at mth allele position of a
chromosome indicates a scene transition after the mth dialogue
unit while a ‘0’ indicates scene continuation. Since the nth
dialogue unit would be the last one in the script, encoding a
transition for it in the solution string would be unnecessary.
Hence the length of such a string/chromosome is n-1. Figure 6
illustrates the scheme vividly.

2) Crossover, Mutation and Selection.
Since binary encoding has been adopted, usual genetic

operators have been conveniently deployed. Single point
crossover has been adopted. Mutation involves bit flipping
where a ‘0’ is replaced by a ‘1’ and vice-versa. Standard
Roulette Wheel Selection has been applied.

3) Population Size and Evolution.
We have incorporated the elitist model of GA wherein the

fittest chromosome from each generation is preserved so as to
ensure the best solution is not lost. Population size has been
kept 50. We run the GA up to 100 generations.

4) Fitness Computation.
The fitness function is at the heart of our genetic algorithm

framework. Dialogues across consecutive scenes have been
assumed to be different or dissimilar.

D1: <dialogue text>
D2: <dialogue text>
D3: <dialogue text>
D4: <dialogue text>
D5: <dialogue text>
D6: <dialogue text>
D7: <dialogue text>
D8: <dialogue text>
D9: <dialogue text>
D10: <dialogue text>
D11: <dialogue text>
D12: <dialogue text>

.

.

.

Genetic
Algorithm

based Scene
Change

detection

D1: <dialogue text>
D2: <dialogue text>
D3: <dialogue text>

<scene transition>

D4: <dialogue text>
D5: <dialogue text>
D6: <dialogue text>
D7: <dialogue text>
D8: <dialogue text>
D9: <dialogue text>
D10: <dialogue text>

<scene transition>

D11: <dialogue text>
D12: <dialogue text>

.

.

.

57 Polibits (47) 2013ISSN 1870-9044

Scene Boundary Detection from Movie Dialogue: A Genetic Algorithm Approach

Fig. 5.Workflow of our system

In our scheme, those solutions that encode scene transitions
resulting in greater dissimilarity across consecutive scenes
have been considered as fitter chromosomes. Thus, given the
binary encoding of each chromosome, the resulting scene-
segmentation of dialogue units has been easily reconstructed.
Thereafter, dissimilarity across consecutive groups of
dialogue has been capitalized in computation of fitness. The
SentiWordnet 3.0 [13] scores and Wordnet similarity of
encoded scenes have also been accounted for.

(a) SentiWornet scores.
For every script, the Stanford CoreNLP1 (version 1.3.3) has

been used to tokenize dialogue unit text, identify the named
entities in turns and assign part-of-speech (POS) tags to
tokens in a turn. Thereafter SentiWordnet 3.0 has been used to
compute the total sentiment scores2 of each dialogue unit.
Sentiment scores of nouns excluding named entities,
adjectives, adverbs and verbs only have been considered for
this computation.

Consider the dialogue unit given below,

DEANNA: Relax, Freddie honey. Come dance with me.

The POS tagged version of the above with sentiment values
indicated in parentheses is as follows,

Likewise, sum total sentiment score of all dialogues in

every scene was computed, as encoded in any given
chromosome. If a chromosome encoded scenes (groups of
dialogue) S1, S2…Sn with total sentiment values P1, P2, …,Pn
respectively, its fitness Fsentiment is computed as follows,

𝐹𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 = �(𝑃𝑖 − 𝑃𝑖−1)2
𝑛

𝑖=2

(b) Wordnet distance of keywords.
Each dialogue unit has been tokenized, named entities have

been identified and POS tags have been assigned to tokens
using Stanford CoreNLP.

1 http://nlp.stanford.edu/software/corenlp.shtml
2 Online resource: http://sentiwordnet.isti.cnr.it/code/SWN3.java

Fig. 6.Snippet of dialogue sequence from Godfather-II and its encoding.

Additionally, each of the dialogue units has been annotated
with the CoreNLP parse annotator so as to obtain the Stanford
semantic dependency relations [14] of each turn. Object
relations have also been identified (if present) in each turn
namely dobj, iobj and pobj. Thereafter, the dependent
components in those relations have been collected. A
dependent in such an object relation has been considered as a
potential keyword or topic word of the piece of dialogue.
However, a dependent is ignored if it appeared in a list of stop
words. An example with the keywords thus identified is given
below (numbered ones are the identified words in question)

CONNIE: I got surprises1 for everybody2!

Wordnet distance between keywords across consecutive
dialogue groups have been considered for fitness computation.
The getDistance() method of RiTaWordnet3 library has been
deployed for computation of semantic distance between two
words in Wordnet hierarchy.

Say the distance of two word is given by d(w1,w2). It is the
absolute value of the aforementioned distance metric between
two words w1 and w2 in the Wordnet ontology.

3 http://rednoise.org/rita/wordnet/documentation/index.htm

Get a
movie
script

Peprocess
it to

prepare
resource

Obtain the
sequence

of dialogue
units from
the script
resource

Feed the
sequence

of dialogue
units to the

GA

Obtain the
scene wise
clustering

of dialogue
sequence
output by

GA

Compare the
resulting grouping
of dialogue units
with the original

scenewise
grouping in script

Relax1/VB(-0.06668) ,/,Freddie/NNPhoney2/NN(0.04166)
./. Come3/VB(0.00529) dance4/NN(0.0) with/IN me/PRP ./.

58Polibits (47) 2013 ISSN 1870-9044

Amitava Kundu, Dipankar Das, and Sivaji Bandyopadhyay

TABLE 1.
 PERFORMANCE OF SCENE BOUNDARY DETECTION

Movie #Dialogue
Units in

Actual #scene
transitions in With Fbaseline With Fsentiment With Fwordnet With Fcombined

Script script dialogue

sequence PGA
Transitions
correctly
detected

PGA
Transitions
correctly
detected

PGA
Transitions
correctly
detected

PGA
Transitions
correctly
detected

Godfather-II 1190 195 31.2% 69.3% 51.3% 46.7% 57.6% 47.1% 55.6% 48.7%
Casino 2478 452 41.7% 64.4% 52.3% 49.1% 51.7% 42.7% 52.7% 49.6%

Citizen Kane 1014 88 37.8% 73.3% 52.1% 45.4% 58.8% 38.7% 55.4% 38.7%

Average 36.9% 69.0% 51.9% 47.1% 56.0% 42.8% 54.6% 45.7%

It gives the minimum distance between any two senses for

the two words in the WordNet tree (result normalized to 0–1).
If a chromosome encodes scenes (groups of dialogue) S1,
S2,…, Sz, with sets of keywords K1, K2,…, Kn respectively,
then the fitness Fwordnet is given by

𝐹𝑤𝑜𝑟𝑑𝑛𝑒𝑡 = � � 𝑑(𝑥,𝑦)
𝑥∈𝐾𝑖,
𝑦∈𝐾𝑖−1

𝑛

𝑖=2

.

(c) Combined Effect.
To examine the combined effect of the above two distances
we have also experimented with the following fitness function
which mixes the effect of both.

𝐹𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝐹𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝐹𝑤𝑜𝑟𝑑𝑛𝑒𝑡 .

B. Evaluation of Solution
Once the fittest chromosome across all the generations was

obtained, the solution was obtained. We have used the
Hamming distance for the evaluation purpose as our solutions
have been encoded using binary encoding. Hamming distance
of two binary strings is the number of bit positions that differ.
Since we had prepared our resource files with the scene-
boundary information, we were able to construct the actual
solution as per our encoding scene. Then we compared the
solution obtained using the GA with the former. If Sactual was
the binary string representing the actual solution and SGA the
solution obtained using GA, we defined the performance
metric PGA as follows:

𝑃𝐺𝐴 = �1 −
𝐻𝑎𝑚𝑚𝑖𝑛𝑔𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑆𝑎𝑐𝑡𝑢𝑎𝑙 ,𝑆𝐺𝐴)
#𝐷𝑖𝑎𝑙𝑜𝑔𝑢𝑒𝑢𝑛𝑖𝑡𝑠𝑖𝑛𝑡ℎ𝑒𝑠𝑐𝑟𝑖𝑝𝑡 − 1� × 100%

=
#𝐵𝑖𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑚𝑎𝑡𝑐ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑆𝐺𝐴& 𝑆𝑎𝑐𝑡𝑢𝑎𝑙

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑑𝑖𝑎𝑙𝑜𝑔𝑢𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 × 100%.

The present task is not a supervised learning problem. So
accurate spotting of scene transitions is understandably
difficult. Thus, besides counting the number of correct
transitions located, we have also tried to evaluate the
performance differently. The above metric measures the
similarity of the dialogue grouping output by the system with
the original scene-wise grouping.

We present a simple baseline for comparison. We do not
use identities of speakers (their names) of turns anywhere in
the experiments. Instead, word overlap of scenes was used in
devising a baseline. Say, Si and Si-1 are adjacent dialogue
scenes with the sets of words (stop words and named entities
excluded) Wi and Wi-1. The word overlap can be given by the
Jaccard index:

𝐽(𝑆𝑖−1, 𝑆𝑖) =
|𝑊𝑖 ∩𝑊𝑖−1|
|𝑊𝑖 ∪𝑊𝑖−1|

.

The closer 𝐽(𝑆𝑖−1, 𝑆𝑖) gets to 1 the greater the similarity of
adjacent scenes Si and Si-1. Put in another way, the closer
 𝐽′(𝑆𝑖−1, 𝑆𝑖) = 1 − 𝐽(𝑆𝑖−1, 𝑆𝑖) gets to 1 greater the
dissimilarity of the same scenes in terms of common words.
Thus the baseline fitness was devised as follows:

𝐹𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = �𝐽′(𝑆𝑖−1, 𝑆𝑖)
𝑛

𝑖=2

IV. RESULTS AND OBSERVATIONS
A number of scripts have been chosen and processed for

resource preparation. Scripts of three movies, namely
Godfather-II, Casino and Citizen Kane have been chosen for
the purpose of experimentation. These scripts have been
picked up due to the presence of abundant dialogue units (in
excess of 1000). Table 1 sums up the performance of the
scene transition detection algorithm. It reports the proposed
performance metric PGA as well as percentage of transitions
correctly detected.

When the encoded version of a solution is considered, the
proposed PGA reflects the extent of similarity of the obtained
solution with the actual one. In other words it reflects a score
for the obtained solution.

The results report an average accuracy of 47.1% in correct
detection of scene transitions with the proposed fitness metric
Fsentiment. Use of Wordnet features in fitness computation
improves the average value of PGA but results in a fall in
average accuracy to 42.8%. The combined sentiment and
Wordnet features produce an average accuracy of 45.7%. It
seems that SentiWordNet features have been more
informative than WordNet based distance.

59 Polibits (47) 2013ISSN 1870-9044

Scene Boundary Detection from Movie Dialogue: A Genetic Algorithm Approach

We have observed a lot of false detections of scene
boundaries (detection of a transition where the scene should
actually continue), resulting in over-fragmentation of dialogue
sequence. The modest values for PGA may be attributed to the
same. Moreover, no information about the distribution of
number of transitions in scripts was available. Thus, the GA
used in our experiments initializes each chromosome
randomly without a bias to a ‘0’ (scene continuation) or ‘1’
(scene transition). There has been no bias in mutating a ‘0’ or
‘1’ valued gene.

As far as the baseline is concerned, its average PGA score of
36.9% is outperformed although it gives higher average scene
transition detection accuracy (69.0%). We observed that in the
baseline system the number of scenes output by the system
was way higher than that in the original scripts. For example,
in Citizen Kane as many as 731 scenes were output while the
script describes 88 scenes of dialogue only. In other words,
the solution chromosome for all the three movies contain
mostly ‘1’s, under the binary encoding scheme. However, PGA
dips as expected.

V. CONCLUSIONS AND FUTURE DIRECTIONS
In this article, we have reported a mechanism to fragment a

sequence of movie script dialogue into scene-wise groups.
Wordnet based semantic relatedness and SentiWordnet based
affective features have been fed to a genetic algorithm
framework to obtain a fragmented, scene-segmented dialogue
sequence. The initial results have been encouraging. As a part
of future work we are planning to apply our mechanism to
easily available movie subtitles. The time information present
in subtitles may be capitalized. It may be noted that subtitles
hardly contain information about the setting in the movie and
conveys mostly the dialogue. The proposed scheme coupled
with the time information of subtitles seems to be appropriate
for locating scene transitions. Besides, the same algorithm can
be suitably modified for identification of emotional episodes
in conversation from subtitles or scripts. We are planning to

incorporate more textual features (e.g. co-reference
resolution) into the proposed framework.

REFERENCES
[1] J. J. Jung, E. You, and S. B. Park, “Emotion-based character clustering

for managing story-based contents: a cinemetric analysis,” Multimedia
Tools and Applications, pp. 1-17, 2012.

[2] G. I. Lin, and M. A. Walker, "All the world’s a stage: Learning
character models from film," In Proceedings of the Seventh AI and
Interactive Digital Entertainment Conference, AIIDE, vol. 11, 2011.

[3] M. A. Walker, G. I. Lin, and J. E. Sawyer, “An Annotated Corpus of
Film Dialogue for Learning and Characterizing Character Style,”
Proceedings of LREC, 2012.

[4] R. E. Banchs, “Movie-DiC: a movie dialogue corpus for research and
development,” In Proc. of the 50th Annual Meeting of the ACL. 2012,
2012.

[5] M. Cooper, and J. Foote, “Scene boundary detection via video self-
similarity analysis,” International Conference on Image Processing,
vol. 3, pp. 378-381, IEEE, 2001.

[6] J. Wang, and T. S. Chua, “A cinematic-based framework for scene
boundary detection in video,” The Visual Computer, vol. 19, no.5, 2003,
pp-329-341.

[7] T. Cour, C. Jordan, E. Miltsakaki, and B. Taskar,
“Movie/script:Alignment and parsing of video and text transcription,”
Proc. 10th European Conf. Computer Vision, 2008, pp. 158-171.

[8] S. B. Park, H. N. Kim, H. Kim, and G. S. Jo, “Exploiting Script-
Subtitles Alignment to Scene Boundary Detection in Movie,” In
Multimedia (ISM), 2010 IEEE International Symposium on, pp. 49-56.
IEEE (2010)

[9] R. Turetsky, and N. Dimitrova, “Screenplay alignment for closed
system speaker identification and analysis of feature films,” Proc. IEEE
Int. Conf. Multimedia and Expo (ICME’04), 2004, pp. 1659-1662.

[10] D. E. Goldberg, “Genetic Algorithms in Search, Optimization and
Machine Learning,” Addi-son-Wesley, New York, 1989.

[11] L. (Ed.) Davis, “Handbook of Genetic Algorithms,” Van Nostrand
Reinhold, New York, 1991.

[12] A. Jhala, “Exploiting Structure and Conventions of Movie Scripts for
Information Retrieval and Text Mining,” Interactive Storytelling, 2008,
pp. 210-213.

[13] B. Stefano, A. Esuli, and F. Sebastiani, "Sentiwordnet 3.0: An enhanced
lexical resource for sentiment analysis and opinion mining," In
Proceedings of the Seventh conference on International Language
Resources and Evaluation (LREC’10), Valletta, Malta, May. European
Language Resources Association (ELRA), 2010.

[14] M. C. De Marneffe, C. D. Manning, “Stanford typed dependencies
manual,” nlp. stan-ford. edu/software/dependencies_manual.pdf , 2008.

60Polibits (47) 2013 ISSN 1870-9044

Amitava Kundu, Dipankar Das, and Sivaji Bandyopadhyay

Abstract—Mobile agents are autonomous programs that may
be dispatched through computer networks. Using a mobile agent
is a potentially efficient method to perform transactions and
retrieve information in networks. Unknown congestion in a
network causes uncertainty in the routing times of mobile agents
so the routing of mobile agents cannot rely solely on the average
travel time. In this paper we deal with a given stochastic network
in which the mobile agent routing time is a random variable.
Given pre-specified values R and PR, the objective is to find the
path with the minimum expected time under the constraint that
the probability that the path time is less than R is at least PR. We
show that this problem is NP-hard, and construct an exact
pseudo-polynomial algorithm and an ε-approximation algorithm
(FPTAS) for the problem.

Index Terms—Agent-based architecture, fast routing algo-
rithm, FPTAS, stochastic routing.

I. INTRODUCTION
N the context of distributed computer communication
networks, we define an agent as “a human or software

system that communicates and cooperates with other human or
software systems to solve a complex problem that is beyond
the capability of each individual system” [1]. This definition is
compatible with the definitions given by Jennings and
Wooldridge [2], Shen et al. [3–5], and Peng et al. [6]. An
autonomous agent-based system is a system that is able to
function in some environments without the direct intervention
of human beings or other agents and that has control over its
own actions and internal states. Its major advantage is that it
can effectively access distributed resources in a low-
bandwidth network. In particular, such a system may be useful
in a client/server model, in which a client needs to access a
huge database on a server.

This access requires a large amount of data to be
transmitted over the network and may significantly waste
bandwidth. By sending a mobile program to the server and
performing data processing at the server, unnecessary data

Manuscript received on June 1, 2012; accepted for publication on August
23, 2012.

A. Elalouf is with Bar-Ilan University, Ramat Gan, Israel (e-mail:
amir.elalouf@biu.ac.il).

E. Levner is with Ashkelon Academic College, Ashkelon, Israel (e-mail:
elevner@acad.ash-college.ac.il).

T.C.E. Cheng is with Hong Kong Polytechnic University, Kowloon, Hong
Kong (e-mail: edwin.cheng@inet.polyu.edu.hk).

transmission can be avoided. Even if the client/server
connection fails, the mobile program can successfully perform
its mission.

Mobile agent-based technologies have been used in
distributed computer networks for more than two decades.
Establishing the notion of mobile agents in 1994, White [7]
describes a computational environment known as “Telescript”
in which running programs are able to transport themselves
from host to host in a computer network. Tsichritzis [8]
introduces the notion of mobile computation by describing a
hypothetical computing environment in which all the objects
are mobile. Within the scope of this paper, we follow the
definitions in [3–11] and define a mobile agent as “a software
agent that is able to autonomously migrate from one host to
another in a computer network.”

The latest achievements in multi-agent systems have
brought new possibilities for integrated systems management.
In typical applications, a mobile agent visits several hosts in a
network in order to complete its mission. The hosts provide
the agent with information and access to services, as well as a
platform for carrying out various actions and for
communicating with other agents. The services and
information that the agent needs to access are distributed
across different sites and are available in different forms and
at different levels of accuracy and degrees of reliability. This
gives rise to a mobile agent routing problem with uncertain
data, in which limited computational resources are available at
many possible sites.

A given benefit function determines how much benefit (e.g.,
information from sites, retrieval data, etc.) each site
contributes to an agent’s mission. Since many different sites
provide information yielding different degrees of benefit, the
mobile agent should find a best possible itinerary to visit them
under resource constraints. The problem of enhancing the
efficiency of mobile agents then reduces to the problem of
finding resource-constrained extremal paths in a graph. The
agent’s routing problem consists in finding an information- or
resource-constrained route that provides the best agent
performance.

In this study we deal with mobile agent routing in a
stochastic network. An agent takes an instruction to move
from one location to another until it reaches its destination,
where each action/move involves uncertainty. The common
objective function for an agent is the minimum expected

Efficient Routing of Mobile Agents in a
Stochastic Network

Amir Elalouf, Eugene Levner, and T.C.E. Cheng

I

61 Polibits (47) 2013ISSN 1870-9044; pp. 61–66

performance time or the minimum expected cost. In contrast
to many earlier known agent routing problems (see, e.g. [12–
15]), we study uncertainty by explicitly taking into account
variance in agents’ routes and probabilistic path
characteristics.

We do this by incorporating a corresponding non-linear
constraint into the problem formulation. To the best of our
knowledge, there is no work in the literature with a focus on
the design of efficient (polynomial-time) solution methods for
the constrained stochastic agent-routing problem. Aiming to
fill this research gap, we develop a fast ε-approximation
algorithm for solving the considered problem. Another
contribution of this paper is that, whereas many previous
works (e.g., [12–14]) have considered acyclic networks, we
allow the network to contain cycles, which makes the problem
much more practical. While the simple deterministic shortest
path problem can be solved in polynomial time, the
considered stochastic agent-routing problem turns out to be
NP-hard.

In the next section we provide a brief overview of other
works related to our study. In Section III we formulate the
problem. In Section IV we present the exact dynamic
programming (DP) solution algorithm. In Section V we
construct a new fully polynomial time approximation scheme
(FPTAS) algorithm. Section VI concludes the paper.

II. RELATED WORKS

The following basic mobile agent-routing problems have
been studied in the literature:

Problem P1. To maximize the total benefit generated from
agent travel, subject to the condition that the total travel time
(sometimes called “delay”) does not exceed a given threshold.
Such a problem has been studied by Camponogara and
Shima [12] and by Elalouf and Levner [1].

Problem P2. To minimize the agent’s total expected travel
time to complete the task under the constraint that the total
travel cost does not exceed a given budget limit. Such a
problem has been investigated by, e.g., Brewington et al. [15],
Hassin [14], Goel et al. [16], and Xue et al. [17], among many
others.

For the agent routing task, a computational scheme
considering multiple objectives has been pursued by Wu et
al. [18], who combine three objectives (communication cost,
path loss, and detected signal energy level) into a single
function and optimize it using a genetic algorithm that
outperforms local heuristics.

To evaluate the effectiveness of multi-objective algorithms
against a single-objective approach, Rajoopalan [19] applies a
more general weighted genetic algorithm (WGA) iterated with
different weights in order to obtain different non-dominated
routing solutions.

Osman et al. [20] analyze an execution model for agent
routing to develop a pragmatic framework for fault tolerance

in agent systems. This framework adopts a communication-
pair, independent-check pointing strategy.

In this paper we consider the mobile agent framework
described by Rech et al. [21] and by Camponogara and Shima
[12]. Specifically, we develop a graph-theoretic model for
computing the agent’s itinerary under resource constraints,
and on the basis of this model we design exact DP and
approximation solution algorithms.

In what follows, we suggest a general three-stage technique,
which follows and extends an earlier computational scheme
suggested by Gens and Levner [22, 23] and by Elalouf and
Levner [13] for the Knapsack and routing problems,
respectively.

The new technique essentially improves on the algorithms
proposed by Camponogara and Shima [12] and Hassin [14]
for the deterministic constrained routing problems P1 and P2,
and also provides a new way to obtain a fast solution for the
stochastic routing problem.

III. PROBLEM FORMULATION

The problem framework is based on a computational
network composed of a graph (possibly cyclic), G = (N, A),
with a set N of nodes, a set A of arcs, a start node s = 1, and a
destination node t = n, where |N| = n and |A| = h. The term tij,
denoting the time to traverse arc (i, j) in G, is a normal random
variable characterized by two parameters: the expected time
mij and the variance vij. The parameters mij are assumed to be
integers. A path p is called feasible if the probability that the
path time is less than R is at least PR, where R and PR are
given values. The problem is to find a feasible path with the
minimum expected time.

Problem input: G(N, A): a given graph.
For any arc (i, j)∈A, two parameters are given: mij, the

expected time; vij, the variance.
M(p) denotes the expected time to traverse path p;
()

(,)
ij

i j p
M p m

∈

= ∑ .

V(p) denotes the variance of the time it takes to traverse
path p. We assume that all the times tij are independent
random variables, and therefore ()

(,)
ij

i j p
V p v

∈

= ∑ .

In a mathematical form, the problem is to find a path p such
that

()()

() () ()1

min

.
p

R

M p

s t

M p P V p Rφ −+ ≤

Note that 1φ − is the inverse form of the standard normal
distribution. The meaning of the constraint is evident, i.e., if
the constraint is satisfied, the probability that the traverse time
will not exceed R is at least PR.

62Polibits (47) 2013 ISSN 1870-9044

Amir Elalouf, Eugene Levner, and T.C.E. Cheng

IV. EXACT SOLUTION ALGORITHM: DYNAMIC PROGRAMMING

This section introduces an exact DP solution algorithm.
Since mij are assumed to be integers, DP is a pseudo-
polynomial solution algorithm. Its complexity is estimated
below.

Let us associate with each path p a pair (M, V), where M =
M(p) is the expected time to traverse path p, and,
correspondingly, V = V(p) is the variance of the time to
traverse p. We deal with sets S(k) of pairs (M, V), arranged in
increasing order of the M-values, so that every pair in S(k)
corresponds to a path from node s to a node k. In order to
restore the path corresponding to a pair (M, V), we define for
each pair a predecessor pair and use standard backtracking.

If there are two pairs in S(k), (M1, V1) and (M2, V2) such
that M1 ≤ M2 and V1 ≤ V2, then the pair (M2, V2) is called
dominated and may be discarded. Let UB be an upper bound
on the total expected time for the optimal path. For instance,
UB can be set to

(,)
ij

i j A
m

∈
∑ . The polynomial time DP solution

algorithm is as follows:

Algorithm 1. Exact pseudo-polynomial DP solution

1. Input: G(N, A), |N| = n, |A| = h,
{(m(i, j), v(i, j) | (i, j)∈A}, R

2. Output: A constrained path with minimum expected time
3. Step 1. [Initialization]
4. Set S(1) = {(0, 0)}, S(k) ← ∅ for k = 2, …, n
5. Step 2. [Generate S(2) to S(n)]
6. Repeat n-1 times
7. for each arc (u, k) A∈ (leading from node u to node k)
8. W← ∅
9. for each pair (M, V)∈S(u) do
10. if ()1(,) (,)RM m u k P V v u k Rφ −+ + + ≤

then W ← W ∪ {(M+m(u, k), V+v(u, k))}
11. endfor
12. S(k) ← merge(S(k), W); during merging eliminate the

dominated pairs
13. endfor
14. End Repeat
15. Step 3. [Determine optimal solution]
16. find min M in S(n), denote it by ans
17. Return ans as the optimal time; use backtracking to find optimal

path.

Proposition 1.The complexity of the DP solution algorithm
(Algorithm 1) is O(hnUB).

Proof: Since the times are integers and we discard dominated
pairs, there are at most UB pairs in sets W and S(k).
Furthermore, constructing W in lines 9–11 requires O(UB)
elementary operations, because W is constructed from a single
S(k). Merging the sorted sets W and S(k) in line 12, as well as
discarding all the dominated pairs, is done in linear time (in
the number of pairs, which is at most UB).

In Step 2, lines 5–14, we have two nested loops, where the
first one begins at line 6 and the second at line 7. These two
loops go over all the arcs n–1 times, so in total we have O(hn)
iterations of lines 11–13. Thus, the total complexity of
Algorithm 1 is O(hnUB). □

V. FULLY POLYNOMIAL TIME APPROXIMATION SCHEME

A. General Description of the FPTAS
Our approach to constructing an FPTAS follows the so-

called interval partitioning computational scheme. The interval
partitioning technique was originally proposed by Sahni [24]
for the Knapsack problem and was later improved by Gens
and Levner [21], Levner et al. [25], and Elalouf et al. [1]. We
suggest a scheme that consists of three main stages:

Stage A: Find a preliminary lower bound LB and an upper
bound UB on the optimal path’s expected time such that
UB/LB ≤ n.

Stage B: Find improved lower and upper bounds such that
UB/LB ≤ 2.

Stage C: Partition the interval [LB,UB] into n/ε equal
subintervals, delete sufficiently close solutions in the
subintervals (taking only one “representative” from each
subinterval), and then find an ε-approximation solution using
full enumeration of the “representatives”.

This technique is similar to that presented by Elalouf et
al. [1]. Note, however, that the type of problem treated in the
present paper is more practical than that in [1]. First, the
problem considered here is of a stochastic nature, so it is
described by a non-linear constraint. Second, its underlying
graph G is allowed to have cycles. As a result, the algorithm
proposed herein has a different complexity compared with that
in [1].

B. Stage A: Finding Preliminary Lower and Upper Bounds
We use the following greedy technique: Let A = {a1, a2, …,

ah} be the set of arcs in G(N, A). Denote graph G'(N', A') with
the same set of nodes, i.e., N' = N, and the set of arcs 'A A⊆ .
To define A', we use the notation xai, a binary variable. If xai =
1 then ai∈A'; otherwise ai ∉ A'. We order the arcs in G in
non-decreasing order of their expected times, i.e.,

[] [] []1 2a a ahm m m≤ ≤ ≤ , and initialize 0aix = for any i = 1,

…, h (i.e., we initialize G' as a graph with no arcs).
Then we sequentially set [] []1 21, 1,a ax x= =  and add each

arc to the graph until we obtain a path from the source to the
destination that satisfies the constraint.

If all xai = 1 but we cannot find such a path, there is no
feasible solution for the problem considered. Let xk be the last
variable that is set to 1 in the above procedure. Then we
set 0 akm m= . Obviously, the optimal total travel time (denoted
by OPT) must lie between m0 and nm0. When OPT equals
zero, the above greedy procedure in Stage A finds the exact

63 Polibits (47) 2013ISSN 1870-9044

Efficient Routing of Mobile Agents in a Stochastic Network

optimal solution (i.e., a path of zero duration) and Stages B
and C are not required.

Proposition 2. The complexity of the FPTAS in Stage A is
O(n2 log h).

Proof. Sorting the arcs described above is done in O(h log h).
Each check of whether the graph G has a feasible path on a
selected set of arcs requires O(n2) time [26]. The total number
of checks is O(log h) if we use a binary search in the interval
[1, h]. Thus, the complexity of Stage A is O(n2 log h). □

C. Stage B: Finding Improved Bounds
This stage has two building blocks: a test procedure denoted

Test(w, ε), and a narrowing procedure denoted BOUNDS,
which uses Test(w, ε) as a sub-procedure. The procedure is
similar to the testing method described in [1] and [27], with
some minor changes that take the stochastic nature of the
problem into account.

Test Procedure (Test(w, ε))
Test(w, ε) is a parametric dynamic-programming type

algorithm that has the following property: Given positive
parameters w and ε, it reports either that the minimum possible
expected travel time is M* ≤ w or that that M* ≥ w(1-ε).

Test(w, ε) will be repeatedly applied as a sub-procedure in
the algorithm BOUNDS below to narrow the gap between UB
and LB until UB/LB ≤ 2.

Associate a pair (M, V) with each path p, where M = M(p) is
the path’s expected travel time, and, correspondingly,
V = V(p) is the variance of the path time. We deal with sets
S(k) of pairs (M, V) arranged in increasing order of the M-
values so that every pair in S(k) corresponds to a path from the
start node s to a node k. As in the DP solution algorithm
above, we discard all the dominated pairs in all sets S(k).

If M2–M1 ≤ δ, then the pair (M, V) is called δ-close. We
discard δ-close pairs from set S(k) according to the following
procedure:

(a) Let w be a given parameter satisfying LB ≤ w ≤ UB. For
each S(k), partition the interval [0,w] into n ε   equal
subintervals of size no greater than δ = εw/n.

(b) If, for a given subinterval, there are multiple pairs from
S(k) for which the value of M falls into the subinterval, discard
all such δ-close pairs, leaving only one representative pair in
the subinterval, namely, the pair with the smallest (in this
subinterval) V-coordinate.

(c) Any pair (M, V) with M > w (called w-redundant) must
be discarded.

The algorithm for Test(w, ε) is as follows:

Algorithm 2. Testing Procedure (Test(w, ε))

1. Input: G(N, A), |N| = n, |A| = h, {(m(i, j), v(i, j) | (i, j)∈A}, R
2. Input ε, w
3. Δ ← εw/n

4. Step 1. [Initialization]
5. Set S(1) = {(0, 0)}, S(k) ← ∅ for k = 2, …, n
6. Step 2. [Generate S(1) to S(n)]
7. Repeat n-1 times
8. for each arc (u, k) A∈ (leading from node u to node k)
9. W ← ∅
10. for each pair (M, V) ∈S(u) do

11. if ()1(,) (,)RM m u k P V v u k Rφ −+ + + ≤

then W ← W ∪ {(M+m(u, k), V+v(u, k))}
12. endfor
13. S(k) ← merge(S(k), W); during merging eliminate the

dominated pairs and the δ-close pairs
14. endfor
15. End Repeat
16. Step 3. Find a pair (M, V) in S(n), such that M ≤ w.
17. If such a path is found in S(n), return M* ≤ w.
18. If such a path cannot be found in S(n) return M* ≥ w(1–ε)

Proposition 3. The complexity of Test(w, ε) is O(hn2/ε),

Proof. Since the subinterval length is δ = εw/n, we have
O(n/ε) subintervals in the interval [0, w]. Therefore there are
O(n/ε) representative pairs in sets W and S(k). Further,
constructing each W in lines 10-12 requires O(n/ε) elementary
operations. Merging the sorted sets W and S(k) in line 13, as
well as discarding all the dominated pairs, is done in linear
time (in the number of pairs, which is O(n/ε)). Step 2 (starting
in line 6) goes over all the arcs n-1 times, so in total we have
O(nh) iterations of lines 10-12. Thus, the total complexity of
Algorithm 2 is O(hn2/ε). □

The Narrowing Procedure BOUNDS
The narrowing procedure presented in this section

(BOUNDS) is adapted from the procedure suggested by Ergun
et al. [27] for solving the restricted shortest path. Specifically,
when we run Test(w, ε), we choose ε as a function of UB/LB,
updating its value from iteration to iteration. To distinguish
the allowable error (ε) in the FPTAS from the iteratively
changing error in the testing procedure, we denote the latter as
θ. The algorithm proceeds as follows:

Algorithm 3. BOUNDS

1. Input: LB and UB such that UB/LB ≤ n.
2. Output: LB and UB such that UB/LB ≤ 2
3. If UB/LB ≤ 2 , Goto 10

4. Set 1UB LBθ ← −

5. Set ()1w L B UB θ← ⋅ −

6. Run Test(w,θ)
7. If Test(w,θ) returns that M* ≤ w then set UB ← w
8. else set UB ← w(1-θ)
9. Go to line 3
10. Return the improved LB and UB
11. End

64Polibits (47) 2013 ISSN 1870-9044

Amir Elalouf, Eugene Levner, and T.C.E. Cheng

The complexity of BOUNDS is O(hn2). The proof is along
the same line as that of Lemma 5 in [27].

D. Stage C: The ε-Approximation Algorithm (AA)
We start Stage C with LB and UB values satisfying

UB/LB ≤ 2, and obtain an ε-approximation path.
Associate with each path p a pair (M, V), where, as above,

M = M(p) is the path expected time, and, correspondingly,
V = V(p) is the path variance. We deal with sets S(k) of pairs
(M, V) arranged in increasing order of the M-values so that
every pair in S(k) corresponds to a path from the start node s
to a node k. As in DP, we delete all the dominated pairs in all
the S(k) sets. In addition to deleting the dominated pairs, we
delete δ-close pairs as follows:

(a) In each S(k), partition the interval [0, UB] into
()()/ /UB LB n ε   equal subintervals of size no greater than

δ = εLB/n;
(b) If, for a given subinterval, there are multiple pairs from

S(k) for which the value of M falls into the subinterval, discard
all such δ-close pairs, leaving only one representative pair in
the subinterval, namely, the pair with the smallest (in this
subinterval) V-coordinate.

(c) A pair (M, V) with M > UB may be discarded.
The corresponding algorithm proceeds as follows:

Algorithm 4. ε-approximation algorithm (AA (LB, UB, ε))

1. Input: G(N, A), |N| = n, |A| = h, {(m(i, j), v(i, j) | (i, j)∈A}, R
2. Input UB, LB, ε
3. Δ ← εLB/n
4. Output: ε-approximation path such that path expected time is at

most (1+ ε)OPT
5. Step 1. [Initialization]
6. Set S(1) = {(0, 0)}, S(k) ← ∅ for k = 2, …, n
7. Step 2. [Generate S(2) to S(n)]
8. Repeat n-1 times
9. for each arc (u, k) A∈ (leading from node u to node k)
10. W ← ∅
11. for each pair (M, V) ∈S(u) do

12. if ()1(,) (,)RM m u k P V v u k Rφ −+ + + ≤ then

W←W ∪ {(M+m(u, k), V+v(u, k))}
13. endfor
14. S(k) ← merge(S(k), W); during merging eliminate the

dominated pairs and the δ-close pairs
15. endfor
16. End Repeat
17. Step 3. [Determine approximate solution]
18. find min M in S(n), denote it by ans
19. Return ans as the ε-approximation expected time, use

backtracking to find the path
20. The path’s expected time is at most (1+ε)OPT.

Theorem 1. The complexity of AA(LB, UB, ε) is O(hn2/ε).
The complexity of the entire three-stage FPTAS is O(hn2/ε).

Proof: Since the subinterval length is δ = εLB/n, we have
O(n(UB/LB)(1/ε)) subintervals in interval [0, UB], and since
UB/LB ≤ 2, there are O(n/ε) subintervals in the interval [LB,
UB]. Therefore, there are O(n/ε) representative pairs in any set
W, T, and S(k).

Constructing each W in lines 11–13 requires O(n/ε)
elementary operations because W is constructed from a single
S(k). Merging the sorted sets W and T in line 14, as well as
discarding all the dominated pairs, is done in linear time (in
the number of pairs, which is O(n/ε)). In Step 2 we have O(nh)
iterations of lines 11–13. Thus, the total complexity of
Algorithm 4 is O(hn2/ε). Since Step C dominates Steps A and
B of the algorithm, the complexity of the entire approximation
algorithm is O(hn2/ε). □

VI. CONCLUDING REMARKS

The main contribution of this work is a novel routing
scheme for mobile agents in a wireless stochastic network that
optimizes agent performance and reduces possible delays. An
auxiliary dynamic programming algorithm running in pseudo-
polynomial time is proposed for developing a fast routing
strategy.

Notably, algorithm complexity is thoroughly analyzed. The
mathematical model and algorithms presented in this paper
can serve as a prototype for future commercial protocols for
mobile agent routing over stochastic networks.

Future research should focus on developing more realistic
models and solution algorithms that incorporate a broader
variety of the practical characteristics of real-world computer
and communication networks.

REFERENCES
[1] A. Elalouf, E. Levner, and T. C. E. Cheng, “Efficient routing of mobile

agents for agent-based integrated enterprise management: A general
acceleration technique,” Lecture Notes in Business Information
Processing, vol. 88, pp. 1–20, 2011.

[2] N. R. Jennings and M. J. Wooldridge, “Applications of Intelligent
Agents,” in Agent Technology: Foundations, Applications, and
Markets, N. R. Jennings, M. J. Wooldridge, Eds., Heidelberg: Springer,
1998, pp. 3–28.

[3] W. Shen, D. H. Norrie, and J.-P. Barthes, Multi-Agent Systems for
Concurrent Intelligent Design and Manufacturing. London: Taylor and
Francis, 2001.

[4] W. Shen, D. Xue, and D. H. Norrie, “An agent-based manufacturing
enterprise infrastructure for distributed integrated intelligent
manufacturing systems,” in Proceedings of the Third International
Conference on the Practical Application of Intelligent Agents and
Multi-Agents, London, UK, 1997, pp. 1–16.

[5] W. Shen, “Distributed manufacturing scheduling using intelligent
agents,” IEEE Intelligent Systems, vol. 17, pp. 88–94, 2002.

[6] Y. Peng, T. Finin, Y. Labrou, B. Chu, J. Long, X. Tolone, and A.
Boughannam, “A multi-agent system for enterprise integration,” in
Proc. of PAAM’98, London, UK, 1998, pp. 155–169.

[7] J. E. White, Telescript Technology: The Foundation for the Electronic
Marketplace, White Paper, Mountain View, CA, USA: General Magic,
Inc., 1994.

65 Polibits (47) 2013ISSN 1870-9044

Efficient Routing of Mobile Agents in a Stochastic Network

[8] D. Tsichritzis, Objectworld, Office Automation. Heidelberg: Springer-
Verlag, 1985.

[9] W. Shen, Q. Hao, H. J. Yoon, and D. H. Norrie, “Applications of agent-
based systems in intelligent manufacturing: An updated review,”
Advanced Engineering Informatics, vol. 20, pp. 415–431, 2006.

[10] T. Papaioannou, Using Mobile Agents to Improve the Alignment
between Manufacturing and Its IT Support Systems, Robotics and
Autonomous Systems. Amsterdam: Elsevier, 1999.

[11] W. Shen, F. Maturana, and D. H. Norrie, “MetaMorph II: An agent-
based architecture for distributed intelligent design and
manufacturing,” Journal of Intelligent Manufacturing, vol. 11, pp.
237–251, 2000.

[12] E. Camponogara and R. B. Shima, “Mobile agent routing with time
constraints: A resource constrained longest-path approach,” Journal of
Universal Computer Science, vol. 16, pp. 372–401, 2010.

[13] A. Elalouf and E. Levner, “General techniques for accelerating FPTAS
for the routing and knapsack problems,” in Abstract Book, Annual
Meeting 2011 of Operations Research Society of Israel (ORSIS 2011),
Akko, Israel, 2011, p. 14.

[14] R. Hassin, “Approximation schemes for the restricted shortest path
problem,” Mathematics of Operations Research, vol. 17, 36–42, 1992.

[15] B. Brewington, R. Gray, K. Moizumi, D. Kotz, G. Cybenko, and D.
Rus, “Mobile agents in distributed information retrieval,” in Intelligent
Information Agents, M. Klusch, Ed., Heidelberg: Springer Verlag,
1999, pp. 355–395.

[16] A. Goel, K. G. Ramakrishnan, D. Kataria, and D. Logothetis, “Efficient
computation of delay-sensitive routes from one source to all
destinations,” in IEEE Infocom’2001, Washington, DC: IEEE Press,
2001, pp. 854–858.

[17] G. Xue, A. Sen, W. Zhang, J. Tang, and K. Thulasiraman, “Finding a
path subject to many additive QoS constraints,” IEEE Transactions on
Networking, vol. 15, pp. 201–211, 2007.

[18] Q. Wu, N. S. V. Rao, J. Barhen, S. S. Iyengar, V. K. Vaishnavi, H. Qi,
and K. Chakrabarty, “On computing mobile agent routes for data fusion
in distributed sensor networks,” IEEE Trans. Knowledge and Data
Engineering, vol. 16, pp. 740–753, June 2004.

[19] R. Rajagopalan, C. K. Mohan, P. Varshney, and K. Mehrotra, “Multi-
objective mobile agent routing in wireless sensor networks,” in
Evolutionary Computation, 2005. The 2005 IEEE Congress on 2–5
Sept. 2005, vol. 2, 2005, pp. 1730–1737.

[20] T. Osman, W. Wagealla, and A. Bargiela, “An approach to rollback
recovery of collaborating mobile agents,” IEEE Trans. Systems, Man
and Cybernetics, Part C, vol. 34, pp. 48–57, Feb 2004.

[21] L. Rech, R. S. Oliveira, and C. B. Montez, “Dynamic determination of
the itinerary of mobile agents with timing constraints,” in Proc.
IEEE/WIC/ACM International Conference on Intelligent Agent
Technology, Compiegne, France, 2005, pp. 45–50.

[22] G. V. Gens and E. V. Levner, “Fast approximation algorithms for job
sequencing with deadlines,”
Discrete Applied Mathematics, vol. 3, pp. 313–318, 1981.

[23] G. V. Gens and E. V. Levner, “Fast approximation algorithms for
knapsack type problems,” in Lecture Notes in Control and Information
Sciences, vol. 23, Berlin: Springer Verlag, 1980.

[24] S. Sahni, “Algorithms for scheduling independent tasks,” Journal of the
ACM, vol. 23, pp .116–127, 1976.

[25] E. Levner, A. Elalouf, and T. C. E. Cheng, “An improved FPTAS for
mobile agent routing with time constraints,” Journal of Universal
Computer Science, vol. 17, 1854–1862, 2011.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, MA: MIT Press, 2001.

[27] F. Ergun, R. Sinha, and L. Zhang, “An improved FPTAS for restricted
shortest path,” Information Processing Letters, vol. 83, pp. 287–291,
2002.

66Polibits (47) 2013 ISSN 1870-9044

Amir Elalouf, Eugene Levner, and T.C.E. Cheng

Differential Evolution for the Control Gain’s
Optimal Tuning of a Four-bar Mechanism

María Bárbara Calva-Yáñez, Paola Andrea Niño-Suárez, Miguel Gabriel Villarreal-Cervantes,
Gabriel Sepúlveda-Cervantes, and Edgar Alfredo Portilla-Flores

Abstract—In this paper the variation of the velocity error
of a four-bar mechanism with spring and damping forces
is reduced by solving a dynamic optimization problem using
a differential evolution algorithm with a constraint handling
mechanism. The optimal design of the velocity control for the
mechanism is formulated as a dynamic optimization problem.
Moreover, in order to compare the results of the differential
evolution algorithm, a simulation experiment of the proposed
control strategy was carried out. The simulation results and
discussion are presented in order to evaluate the performance
of both approaches in the control of the mechanism.

Index Terms—Velocity control, differential evolution algo-
rithm, four-bar mechanism, dynamic optimization.

I. INTRODUCTION

THE four-bar mechanism (FBM) is extensively used in
several engineering applications [1], [2], [3]. This is

due to the topological simplicity, functional versatility and
because this mechanism can generate a cyclic trajectory (path
generation). Hence, the four-bar mechanism has been widely
studied in the last decades. The path generation of the four-bar
mechanism is achieved by using analytical, numerical and
graphical methods [4]–[6]. Nevertheless, the statement of
optimization problems to increase the number of precision
points and the tracking precision are been used in the path
generation of the FBM [7], [8].

In the analysis and design of the FBM the main assumption
considers that the angular velocity of the actuator is constant.
Nevertheless, it is not always fulfilled, if an electric motor
drives the crank. For example, when the crank rotates, the
center of mass of the FBM may move. The change of the
inertia of the FBM yield an external load to the motor such
that the angular velocity of the crank is not constant. Hence,
it is important to select the appropriate control system that
guarantee an uniform and efficient regulation of the angular
velocity.

Manuscript received on February 25, 2013; accepted for publication on
May 23, 2013.

M. B. Calva-Yáñez, M. G. Villarreal-Cervantes, G. Sepúlveda-Cervantes,
and E. A. Portilla-Flores are with the Instituto Politécnico Nacional,
CIDETEC, Mechatronic Section, Postgraduate Department, Juan de Dios
Bátiz s/n, C.P. 07700 D.F., Mexico (e-mail: b_calva@hotmail.com;
{mvillarrealc, gsepulveda, aportilla}@ipn.mx).

P. A. Niño-Suárez is with the Instituto Politécnico Nacional, ESIME-AZC,
SEPI Section, Las Granjas 682, C.P. 02250 D.F., Mexico (e-mail:
pninos@ipn.mx).

There exist several advanced control strategy that may
guarantee robustness in the angular velocity, such as robust
control [9], adaptive control [10], etc. Nevertheless, from an
industrial point of view, PID controllers can provide a good
performance if the gains are correctly tuned in.

In this paper, the modified PID controller presented in [11]
is used to regulate the angular velocity of a four-bar
mechanism with spring and damping forces (FBM-SDF). The
optimal PID control gains is found by considering a dynamic
optimization problem and by using a constraint handling
mechanism in the differential evolution algorithm to solve
it. The effectiveness of the algorithm is shown in simulation
results.

The paper is organized as follows: Section II presents the
coupled dynamics of the four-bar mechanism with DC motor.
Section III presents the control strategy for the system. In
Section IV, the dynamic optimization problem is stated for
finding the optimal control gains. The constraint handling
differential evolution algorithm is show in Section V. The
simulation results and discussion are given in Section VI and
finally, the conclusions are drawn in Section VII.

II. DYNAMIC MODEL

The four-bar mechanism with spring and damping forces
(FBM-SDF) has one degree of freedom (dof) in the crank
(link L2). This dof is actuated by a DC motor. The schematic
representation of the mechanism is shown in Fig. 1. The
mass, the inertia, the length, the mass center length and
the mass center angle of the i-th link are represented by
mi, Ji, Li, ri, φi, respectively. The angle of the i-th link with
respect to the base frame (X-Y) is named as θi. The stiffness
constant of the spring and the damping coefficient of the
damper are represented by k and C.

The kinematic analysis [5] of the FBM-SDF is required
to obtain the angular velocity θ̇i ∀i = 2, 3, 4 and the linear
velocity vix, viy of the mass center of the i-th link with respect
to the inertial frame. The angular and the linear velocity is
described in (1)-(3).

θ̇i = γiθ̇2 (1)

υix = αiθ̇2 (2)

υiy = βiθ̇2 (3)

67 Polibits (47) 2013ISSN 1870-9044; pp. 67–73

Fig. 1. Four-bar mechanism with spring and damping forces

where:

α2 = −r2 sin(θ2 + φ2) (4)
α3 = −L2 sin θ2 − r3γ3 sin(θ3 + φ3) (5)
α4 = −r4γ4 sin(θ4 + φ4) (6)
β2 = r2 cos(θ2 + φ2) (7)
β3 = L2 cos θ2 − r3γ3 cos(θ3 + φ3) (8)
β4 = −r4γ4 cos(θ4 + φ4) (9)
γ2 = 1 (10)

γ3 =
L2 sin(θ4 − θ2)
L3 sin(θ3 − θ4)

(11)

γ4 =
L2 sin(θ3 − θ2)
L3 sin(θ3 − θ4)

(12)

Defining the Lagrangian function L̃ (13), where K and P
is the kinetic and potential energy, respectively.

L̃ = K − P (13)

where:

K =

4∑
i=2

(
1

2
mi

(
υ2ix + υ2iy

)
+

1

2
Jiθ̇

2
i

)
=

1

2
A (θ2) θ̇

2
2 (14)

P =
1

2
k (θ4 − θ4,0)2 (15)

A (θ2) =

4∑
i=2

(
mi

(
α2
i + β2

i

)
+ γ2i Ji

)
(16)

Using θ2 as the generalized coordinate and following
the methodology described in [11], the Euler-Lagrange
formulation [12] which described the dynamic model of the
FBM-SDF is given by (17), where D is the Rayleigh’s
dissipation function and θ4,0 is the angular position of the
link 4 when the spring is in equilibrium.

T =
d

dt
(
∂L̃

∂θ̇2
)− ∂L̃

∂θ2
+
∂D

∂θ̇2
(17)

where:

D =
1

2
C
·
θ
2

4 (18)

The total and partial derivatives of (17) is given by (19).

T = A (θ2) θ̈2+
1

2

dA (θ2)

dθ2
θ̇22+kγ4 (θ4 − θ4,0)+Cγ24 θ̇2 (19)

where:

A (θ2) = C0 + C1γ
2
3 + C2γ

2
4 + C3γ3 cos (θ2 − θ3 − φ3)

(20)
dA (θ2)

dθ2
= 2C1γ3

dγ3
dθ2

+ 2C2γ4
dγ4
dθ2

+ C3
dγ3
dθ2

cos (θ2 − θ3 − φ3)

− C3γ3 (1− γ3) sin (θ2 − θ3 − φ3) (21)

C0 = J2 +m2r
2
2 +m3L

2
2 (22)

C1 = J3 +m3r
2
3 (23)

C2 = J4 +m4r
2
4 (24)

C4 = 2m3L2r3 (25)
dγ3
dθ2

=
L2 (D1 +D2)

L3 sin
2 (θ3 − θ4)

(26)

dγ4
dθ2

=
L2 (D3 +D4)

L4 sin
2 (θ3 − θ4)

(27)

D1 = (γ4 − 1) sin (θ3 − θ4) cos (θ4 − θ2) (28)
D2 = (γ4 − γ3) sin (θ4 − θ2) cos (θ3 − θ4) (29)
D3 = (γ3 − 1) sin (θ3 − θ4) cos (θ3 − θ2) (30)
D4 = (γ4 − γ3) sin (θ3 − θ2) cos (θ3 − θ4) (31)

In order to model the full dynamics of the FBM-SDF, the
dynamic of the actuator [13] must be included. A schematic
diagram of the DC motor is represented in Fig. 2, where L and
R represent the inductance and the armature resistance, i(t)
and Vin(t) are the current and voltage input, respectively. J
and B is the inertia moment and the friction coefficient of the
output shaft. TL, Tm and Vb is the load torque, the magnetic
motor torque and the Back electromotive force of the motor,
respectively. The motor constant is represented by Kf and the
constant of the back electromotive force is represented by Kb.

The dynamic model of the DC motor [14] consists
on modeling the electrical and mechanical parts. Using
Kirchhoff’s second law, the closed loop circuit of Fig. 2 can
be written as (32).

L
di (t)

dt
+Ri (t) = Vin (t)−Kbθ̇1 (32)

By using the Newton’s second law in the mechanical part
of the DC motor, the equation (33) is obtanied, where Ta and

68Polibits (47) 2013 ISSN 1870-9044

María Bárbara Calva-Yáñez, Paola Andrea Niño-Suárez, Miguel Gabriel Villarreal-Cervantes, Gabriel Sepúlveda-Cervanteset al.

Fig. 2. Schematic diagram of a DC motor

Tb is the output torque of the shaft a and b, respectively (see
Fig. 2).

Tm −Bθ̇1 − Ta − TL = Jθ̈1 (33)

The mechanical transmission among the two gears in the shafts
is expressed in (34), where ri and Ni ∀ i = 1, 2 is the radius
and the number of teeth of the gears.

Tb
Ta

=
θ̇1

θ̇2
=
r2
r1

=
N2

N1
= n (34)

Substituting Ta from (33) to (34), the torque applied to the
mechanical system is written as (35).

Tb = n
(
Tm − TL −Bθ̇1 − Jθ̈1

)
(35)

Using the relation θ̇1 = nθ̇2 in (34), Tm = Kf i and TL = 0,
the dynamic equation of the DC motor is given by (36)-(37).

Tb = nKf i (t)− n2Bθ̇2 − n2Jθ̈2 (36)

L
di (t)

dt
+Ri (t) = Vin (t)− nkbθ̇2 (37)

Hence, the coupled dynamics of the DC motor with the
FBM-SDF is given by combining (36), (37) and (19). Let the
state variable vector x = [x1, x2, x3]

T = [θ2, θ̇2, i]
T and the

input vector u = Vin, the coupled dynamics in a state space
representation of the DC motor with the FBM-SDF is given
by (38).

ẋ = f(~x, u(t), t)

=

 x2
A0

[
A1x

2
2 +A2x2 + nKfx3 +A3

]
1
L (u (t)− nKbx2 −Rx3)

 (38)

where:

Fig. 3. Input angular velocity θ̇2 of the FBM-SDF without a control strategy

A0 =
1

A (x1) + n2J1
(39)

A1 = −1

2

dA (x1)

dx1
(40)

A2 = −
(
Cγ42 + n2B

)
(41)

A3 = −kγ4 (θ4 − θ4,0) (42)

III. CONTROL STRATEGY

In the synthesis of mechanism, the main assumption is to
consider the input velocity as a constant. Nevertheless, this can
no be ensured without a closed loop control system. In Fig. 3
shows the behavior of the input angular velocity θ̇2 when a
constant voltage of 30 V olts is applied. It is observed that the
input angular velocity is not constant. This is true because the
four-bar mechanism presents dead-centre positions and it adds
uncertain loads in the crank.

Based on the work of Tao and Sadler [11], the proposed
control strategy is used in this paper. This controller is stated
as in (43), where Kp, KI and KD is the proportional (P),
integral (I) and derivative (D) gains, respectively. The velocity
error and its derivative are represented by e(t) = θ̇d2 − θ̇2 and
ė(t) = −θ̈2, where θ̇d2 is the constant desired velocity.

u (t) = Kpe (t)

∫ t

0

θ̇d2dt+KI

∫ t

0

e (t) dt+KD ė (t) (43)

IV. DYNAMIC OPTIMIZATION PROBLEM TO FIND THE
OPTIMUM CONTROLLER GAINS FOR CONSTANT INPUT

VELOCITY OF THE FBM-SDF
The dynamic optimization problem [15] consist on finding

the optimum design variables ~p ∈ R3 such that minimize the

69 Polibits (47) 2013ISSN 1870-9044

Differential Evolution for the Control Gain's Optimal Tuning of a Four-bar Mechanism

objective function (44) subject to the closed-loop system of
the FNM-SDF (45) with the initial state vector x0, inequalities
constraints (48) and bounds in the design variable (49).

min−→p εR3
F (−→p) (44)

subject to:

ẋ = f(−→x , u(~p, t), t) (45)

u (t) = Kpe (t)

∫ t

0

θ̇d2dt+KI

∫ t

0

e (t) dt+KD ė (t) (46)

−→x (0) = x0 (47)
g (−→x) ≤ 0 (48)
pi,min ≤ −→p ≤ pi,max (49)

In the next subsections, variables, functions and all parts
that involve the dynamic optimization problem (DOP) are
described.

A. Design Variable Vector

The design variable vector ~p = [Kp,KD,KI]
T ∈ R3

includes the gains of the modified PID controller.

B. Objective Function

The variation of the input velocity of the crank is chosen
as the objective function in the optimization problem. This is
an important issue due to a bad selection of the PID gains,
the input velocity of the crank could be considerably affected.
The objective function is written as in (50), where Max()
and Min() is the maximum and minimum value of the input
velocity presented in the time interval [0, tf].

F (~p) = |Max(x2(t))−Min(x2(t))|; t ∈ [0, tf] (50)

C. Constraints

The first constraint (45) is the solution of the differential
equation of the dynamic model of the FBM-SDF choosing x0
as the initial condition. This constraints provide the dynamic
behavior of the system in the optimization problem.

The inequality constraints consist on establishing that the
rise time tr of the angular velocity of the crank θ̇2(t) is less
than 0.1s and the overshoot does not exceed of 1.7% of the
desired angular velocity θ̇d2 . These constraints is stated as in
(51) and (52), respectively.

g1 : tr ≤ 0.1s (51)
g2 : θ̇2(tr) ≤ θ̇d2 + 0.017θ̇d2 (52)

The bounds in the design variable vector are defined by
~pi,min and ~pi,max ∀ i = 1, 2, 3.

1 BEGIN
2 G = 0
3 Create a random population ~xi

G ∀i = 1, ..., NP
6 Evaluate F (~xi

G), g(~x
i
G), ∀i = 1, ..., NP

7 Do
8 For i = 1 to NP Do
9 Select randomly {r1 6= r2 6= r3} ∈ ~xG.
10 jrand =randint(1, D)
11 For j = 1 to D Do
12 If (randj [0, 1) < CR or j = jrand) Then
13 ui

j,G+1 = xr1
j,G + F (xr2

j,G − xr3
j,G)

14 Else
15 ui

j,G+1 = xi
j,G

16 End If
17 End For
18 Evaluate F (~ui

G+1), g(~u
i
G+1)

19 If (g(~ui
G+1) = 0 and g(~xi

G)=0) Then
20 If (F (~ui

G+1) < F (~xi
G)) Then

21 ~xi
G+1 = ~ui

G+1

22 Else
23 ~xi

G+1 = ~xi
G

24 End If
25 Else If (g(~ui

G+1) < g(~xi
G)) Then

26 ~xi
G+1 = ~ui

G+1

27 Else
28 ~xi

G+1 = ~xi
G; End If

29 End If
30 End For
31 G = G+ 1
32 While (G ≤ GMax)

Fig. 4. CHDE algorithm

V. DIFFERENTIAL EVOLUTION ALGORITHM

In the last decades, the use of heuristic techniques have
been used in engineering problems [16], [17]–[19]. This
is due to the increment of the technological advances
and because problems are non-convex, discontinuous and/or
present discrete variables that make it difficult (or imposible)
to solve them by traditional optimization techniques such as
nonlinear programming techniques.

In this work, the differential evolution (DE) algorithm [20]
with a constraint-handling mechanism [17] is used to solve
the dynamic optimization problem. The constraint-handling
differential evolution (CHDE) algorithm is shown in Fig. 4.
The constraint handling mechanism is included in the selection
operation between the trial vector ~uiG+1 and the target vector
~xiG in order to remain one of them in the population for the
next generation. This mechanism consists on passing the best
individual between them for the next generation (elitism). The
best individual is the individual without constraint violation
and with less or equal objective function value or when both
individuals are unfeasible, the best individual is the one with
less constraint violation (see line 19 and 25 of Fig. 4).

For more details of the algorithm consult [20] and [17].

VI. SIMULATION RESULTS

The simulation results consist on using the CHDE algorithm
in the dynamic optimization stated above. Four parameters

70Polibits (47) 2013 ISSN 1870-9044

María Bárbara Calva-Yáñez, Paola Andrea Niño-Suárez, Miguel Gabriel Villarreal-Cervantes, Gabriel Sepúlveda-Cervanteset al.

in the CHDE algorithm must be chosen. In this case, the
population size NP consists of 100 individuals. The scaling
factor F and the crossover constant CR are randomly
generated in the interval F ∈ [0.3, 0.9] at each generation, and
in the interval CR ∈ [0.8, 1) at each optimization process. The
stop criterion is when the number of generations is fulfilled
GMax = 200.

The CHDE algorithm is programmed in Matlab Release
7.9 on a Windows platform. Computational experiments were
performed on a PC with a 1.83 GHz Core 2 Duo processor and
2 GB of RAM. Ten independent runs of the CHDE algorithm
are performed.

On the other hand, in order to solve the dynamic
optimization problem (44)-(49), the closed-loop system (45)
must be solved numerically. Hence, the Runge-Kutta method
(RKM) is used to solved it, with initial condition chosen as
x0 = [0, 0, 0]T , with a desired velocity selected as θ̇d2 = 30
rad/s and with the kinematic and dynamic parameters of the
coupled dynamics proposed as in Table I.

The bound of the design variable vector is defined as
~pi,min = 0.1, ~pi,max = 50 ∀ i = 1, 2, 3.

All runs of the algorithm converge to the optimum
design variable vector ~p∗ = [50, 16.1881, 1.4394]T with a
performance function value of F (~p∗) = 0.2389. This means
that local solutions are not found by the algorithm and the
found solution can be considered as the global one. The mean
of the time spends to converge the algorithm is ten minutes.

However, in order to compare the behavior of the system
performance with the optimum design variable vector ~p∗, the
behavior of the system performance with PID gains obtained
by a trial and error procedure is carried out. Such tuning is
called experimental tuning in this paper. The experimental
tuning considers the bounds ~pi,min and ~pi,max.

In general, the design of a PID controller of linear system
is broadly studied [21]. Nevertheless, the design of a PID
controller of non-linear systems is not a trivial task. Tuning
of a PID controller by using bifurcation theory is used for
non-linear system [22]. From the feedback control strategy
proposed in the closed loop system, the choice of the controller
gains is realized so that ensures the desired convergence. The
closed loop stability of the proposed strategy is stated by
considering the convergence of the tracking errors.

The experimental tuning procedure is done by keeping in
mind that the higher the proportional gain the lower the

TABLE I
PARAMETERS OF THE FBM-SSDF AND THE DC MOTOR

FBM-SDF’s parameters
L1 =0.5593[m] J2 = 0.00071

[
kg m2

]
m2 = 1.362 [kg]

L2 = 0.102[m] J3 = 0.0173
[
kg m2

]
m3 = 1.362 [kg]

L3 = 0.610[m] J4 = 0.00509
[
kg m2

]
m4 = 0.2041 [kg]

L4 = 0.406[m] φ2 = φ3 = φ4 = 0 [rad]
r2 = 0 [m] r3 = 0.305 [m] r4 = 0.203 [m]

Motor’s parameters
R = 0.4 [Ω] L = 0.05[H] Kf = 0.678 [Nm/A]

Kb = 0.678[V s] B = 0.226[Nms] J = 0.056[kgm2]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

t [s]

θ
2

[
r
a
d
/
s
]

Optimum tuning
Trial and error tuning

Fig. 5. Angular velocity of the crank with both tuning approaches: the
optimum and experimental tuning

speed fluctuation and the steady-state error. On the other
hand, excessively high proportional gains may lead to a large
amount of overshoot if the derivative gain is not large enough.
Additionally, increasing the derivative gain will decrease the
overshoot, but the system response will be slower during the
start-up period. The found gains need to fulfill the estimated
performance, overshoot≤ 1.5%, steady-error≤ 1.0% and rise
time≤ 0.1 second. The resulting design variable vector with
the experimental tuning is ~p∗et = [45.55, 5.25, 1]T with a
performance function value of F (~p∗et) = 0.2702.

It is important to remark that in the experimental tuning
procedure, several possible solutions were obtained,but they
were not feasible from the optimization problem point of view.
After several trials, we finally find the vector ~p∗et which fulfill
the constraints in the optimization problem.

In Fig. 5, the angular velocity of the crank with both tuning
approaches is shown. It is observed that in the optimum
tunning, the angular velocity presents a deviation of 0.79%
from the desired angular velocity. Also, the angular velocity
deviation on the second case was 0.9%. Finally, the rise time
by each one of the approaches were 0.1s and less of 0.1s,
respectively. This indicates that the constraints in the dynamic
optimization problem are satisfied.

On the other hand, the behavior of the control signal with
the optimum design variable vector and with the experimental
tuning is shown in Fig. 6. As it is observed, the control signal
of the optimum approach has a lower overshoot than the
second approach to reach the reference value of 30 rad/s.
This implies greater energy consumption by using the gains
of the experimental tuning. Also, both approaches produce a
control signal which compensates the nonlinear loads in order
to reduce the angular velocity variation.

In Fig. 7, a zoom of the angular velocity of the crank

71 Polibits (47) 2013ISSN 1870-9044

Differential Evolution for the Control Gain's Optimal Tuning of a Four-bar Mechanism

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

40

t [s]

u
(
t
)

[
V
]

Optimum tuning
Trial and error tuning

Fig. 6. Control signal dynamic behavior with both approaches

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
25

26

27

28

29

30

31

t [s]

θ
2

[
r
a
d
/
s
]

Optimum tuning
Trial and error tuning

Fig. 7. Angular velocity of the crank between the time period of 0.05s and
1s with both approaches

with both approaches in the time period between 0.05s and
1s is shown. It is observed that in the experimental tuning
procedure, the rise time of the angular velocity is less than
the optimum approach. However, the steady state behavior of
the optimum approach is most softly than the experimental
tuning procedure.

It is important to comment the although both approaches
produce good results, the best of them is the optimal one. In
addition, the CHDE algorithm is successfully applied to tuning
the PID controller without requiring a priori knowledge of the
system and in the experimental tuning procedure is necessary
this knowledge.

VII. CONCLUSION

In this paper, the optimal gains of a PID controller for
a four-bar mechanism with spring and damping forces is
found by using a differential evolution algorithm with a
constraint handling mechanism. In order to compare the
performance of the system with the optimum control, an
alternative experimental tuning procedure is carried out. The
variation of the crank’s velocity error for a four-bar mechanism
with spring and damping forces is reduced by using both
approaches. In addition, the rise time and the overshoot of
the velocity signal are limited to be in an closed interval.
However, simulation results of the closed-loop system show
that the found optimal gains provide a better performance than
the gains obtained by experimental tuning procedure.

Finally, the main advantage of using the differential
evolution algorithm with a constraint handling mechanism for
finding the optimum PID gains is that it does not require
a priori knowledge of the system and it is easy to program
it. Therefore the CHDE algorithm is becoming more used to
solve this kind of nonlinear and discontinuous problems.

Further research involves the redesign of the structural and
controller parameters considering the dynamic model and by
using alternative evolutive algorithms.

ACKNOWLEDGEMENTS

The first author acknowledges support from CONACYT
through a scholarship to pursue graduate studies at Instituto
Politécnico Nacional. Authors acknowledge support from
CONACyT through grant No. 182298 and support from
COFAA and SIP of the Intituto Politécnico Nacional through
grant No. 20131053 and 20131350.

REFERENCES

[1] R. Madangopal, Z. A. Khan, and S. K. Agrawal, “Biologically inspired
design of small flapping wing air vehicles using four-bar mechanisms
and quasi-steady aerodynamics,” Journal of Mechanical Design, vol.
127, pp. 809–815, 2005.

[2] M. E. Alfaro, D. I. Bolnick, and P. C. Wainwright, “Evolutionary
dynamics of complex biomechanical systems: an example using the
four-bar mechanism,” Evolution, International Journal of Organic
Evolution, vol. 58, no. 3, pp. 495–503, 2004.

[3] M. W. Westneat, “Feeding mechanics of teleost fishes (labridae;
perciformes): A test of four-bar linkage models,” Journal of Morphology,
vol. 205, no. 3, pp. 269–295, 1990.

[4] V. Parlakta, E. Söylemez, and E. Tanik, “On the synthesis of a geared
four-bar mechanism,” Mechanism and Machine Theory, vol. 45, no. 8,
pp. 1142–1152, 2010.

[5] J. E. Shigley and J. J. J. Uicker, Theory of machines and mechanism.
Mc. Graw Hill, 1995.

[6] J. Hrones and G. Nelson, Analysis of Four Bar Linkage. MIT Press
and Wiley, 1951.

[7] M. Khorshidi, M. Soheilypour, M. Peyro, A. Atai, and M. S. Panahi,
“Optimal design of four-bar mechanisms using a hybrid multi-objective
ga with adaptive local search,” Mechanism and Machine Theory, vol. 46,
no. 10, pp. 1453–1465, 2011.

[8] N. Nariman-Zadeh, M. Felezi, A. Jamali, and M. Ganji, “Pareto optimal
synthesis of four-bar mechanisms for path generation,” Mechanism and
Machine Theory, vol. 44, no. 1, pp. 180–191, 2009.

[9] R. A. Freeman and P. V. Kokotovic, Robust Nonlinear Control Design:
State-Space and Lyapunov Techniques. Birkhäuser, 2008.

[10] J.-J. Slotine and W. Li, Applied Nonlinear Control. Prentice Hall, 1991.

72Polibits (47) 2013 ISSN 1870-9044

María Bárbara Calva-Yáñez, Paola Andrea Niño-Suárez, Miguel Gabriel Villarreal-Cervantes, Gabriel Sepúlveda-Cervanteset al.

[11] J. Tao and J. P. Sadler, “Constant speed control of a motor driven
mechanism system,” Mechanism and Machine Theory, vol. 30, no. 5,
pp. 737–748, 1995.

[12] D. T. Greenwood, Classical Dynamics. Dover Publications, INC, 1997.
[13] G. Tao and P. V. Kokotovic., Adaptive control of systems with actuator

and sensor nonlinearities. John Wiley and Sons, 1996.
[14] J. Chiasson, Modeling and High Performance Control of Electric

Machines. Wiley-IEEE Press, 2005.
[15] W. Hong, S. Wang, P. Li, G. Wozny, and L. T. Biegler,

“A quasi-secuential approach to large-scale dynamic optimization
problems,” American Institute of Chemical Engineers, vol. 52, no. 1,
pp. 255–268, 2005.

[16] M. G. Villarreal-Cervantes, C. A. Cruz-Villar, J. Alvarez-Gallegos, and
E. A. Portilla-Flores, “Differential evolution techniques for the structure-
control design of a five-bar parallel robot,” Engineering Optimization,
vol. 42, no. 6, pp. 535–565, 2010.

[17] E. A. Portilla-Flores, E. Mezura-Montes, J. Alvarez-Gallegos, C. A.
Coello-Coellod, C. A. Cruz-Villar, and M. G. Villarreal-Cervantes,
“Parametric reconfiguration improvement in non-iterative concurrent
mechatronic design using an evolutionary-based approach,” Engineering

Applications of Artificial Intelligence, vol. 24, no. 5, pp. 757–771, 2011.
[18] M. G. Villarreal-Cervantes, C. A. Cruz-Villar, J. Álvarez Gallegos,

and E. A. Portilla-Flores, “Kinematic dexterity maximization of an
omnidirectional wheeled mobile robot: A comparison of metaheuristic
and sqp algorithms,” International Journal of Advanced Robotic Systems,
vol. 9, no. 161, pp. 1–12, 2012.

[19] M. G. Villarreal-Cervantes, C. A. Cruz-Villar, J. Alvarez-Gallegos, and
E. A. Portilla-Flores, “Robust structure-control design approach for
mechatronic systems,” IEEE/ASME Transactions on Mechatronics, 2013
On line version DOI: 10.1109/TMECH.2012.2208196.

[20] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential evolution: A
practical approach to global optimization. Springer, December 2005.

[21] I. Gyongy and D. Clarke, “On the automatic tuning and adaptation of pid
controllers,” Control Engineering Practice, vol. 14, no. 1, pp. 149–163,
2006.

[22] M. P. Polo, P. Albertos, and J. Ángel Berná Galiano, “Tuning of a pid
controlled gyro by using the bifurcation theory,” Systems & Control
Letters, vol. 57, no. 1, pp. 10–17, 2008.

73 Polibits (47) 2013ISSN 1870-9044

Differential Evolution for the Control Gain's Optimal Tuning of a Four-bar Mechanism

Resumen—La programación orientada a objeto enfrenta retos
como es el desarrollo de software en ambientes distribuidos. En
esta línea ha surgido el paradigma de agentes. Un agente exhibe
comportamientos que lo diferencia de un objeto, como la
autonomía y la proactividad. La proactividad permite
desarrollar sistemas dirigidos por metas, en los que no es
necesaria una petición para que se inicie un trabajo. Incorporar
proactividad a un software es hoy una necesidad, existe una gran
dependencia de los sistemas computarizados y es mayor la
delegación de tareas en ellos. Los patrones se han utilizado con
éxito en la reducción de tiempo de desarrollo y el número de
errores en el desarrollo de software, además de ser una guía para
resolver un problema típico. En este trabajo se presentan dos
patrones de implementación para incorporar proactividad en un
software y facilitar el trabajo con los agentes. Se incluye un caso
de estudio del uso de los patrones propuestos en un observatorio
tecnológico.

Palabras claves—Agente, patrones, patrón de implementación,
proactividad.

Implementation Patterns to include
Proactive Behaviors

Abstract—Object oriented programming is facing challenges

such as the development of software in distributed environments.
Along this line has emerged the paradigm of agents. An agent
shows behaviors, such as autonomy and proactivity, that
differentiates it from an object. Proactivity allows developing
goal-directed systems, in which a request is not necessary to start
a task. Adding proactivity to a software is nowadays essential,
there is a big dependence on computer systems and it is greater
the delegation of tasks to them. The patterns have been used
successfully in reducing development time and the number of
errors in software, besides of being a guide to solve a typical
problem. In this paper, we present two implementation patterns
to add proactivity to software and to make it easier to work with
agents. A case study about the development of a technology
observatory using both patterns is also included.

Index Terms—Agent, patterns, implementation pattern, pro-

activity.

Manuscrito recibido el 18 de marzo de 2013; aceptado para la publicación
el 23 de mayo de 2013.

Mailyn Moreno, Alejandro Rosete y Martha D. Delgado pertenecen a la
Facultad de Ingeniería Informática, Instituto Superior Politécnico “José
Antonio Echeverría”, La Habana, Cuba (e-mail: {my, rosete, marta}@ceis.
cujae.edu.cu).

Alternán Carrasco pertenece al Complejo de Investigaciones Tecnológicas
Integradas, La Habana, Cuba (e-mail: acarrasco@udio.cujae.edu.cu).

I. INTRODUCCIÓN

L paradigma de agentes constituye una tecnología
prominente y atractiva en la informática actual. Los

agentes y los sistemas multiagente están contribuyendo
actualmente en dominios diversos, tales como recuperación de
datos, interfaces de usuario, comercio electrónico, robótica,
colaboración por computadora, juegos de computadora,
educación y entrenamiento, entre otras [1]. Además los
agentes están emergiendo como una nueva manera de
pensamiento, como un paradigma conceptual para analizar
problemas y diseñar sistemas, y ocuparse de la complejidad,
distribución e interactividad; mientras que proporcionan una
nueva perspectiva en la computación y la inteligencia [1]. Los
agentes son entidades que poseen propiedades como la
autonomía, la proactividad, la habilidad social, entre otras [2].
Existen agentes orientados a metas, que le dan solución a
diferentes problemas. Entre las propiedades más significativas
que diferencian a los agentes de los objetos está la
proactividad, es decir, los agentes no sólo actúan en respuesta
a su ambiente sino que son capaces de tener comportamiento
orientado a metas [3].

En la actualidad, los software mayormente se construyen
bajo el paradigma de orientación a objetos, ya que este
paradigma ha alcanzado un gran auge [4]. En nuestros días
hay una tendencia elevada de utilizar enfoques orientados a
objetos en todos los sistemas que se construyen, debido a las
facilidades que brinda para la reutilización del código [4]. Los
patrones de diseño son una muestra indiscutible de la fortaleza
que tiene la orientación a objetos [5].

Los patrones son una solución a problemas típicos y con su
empleo se puede hacer un desarrollo de software más rápido y
con mayor calidad [6].

En el desarrollo de un software orientado a objetos no se
tiene en cuenta los comportamientos proactivos que se puedan
incluir, los que pueden ser beneficiosos a los usuarios finales.
Esto se debe a la naturaleza propia del objeto que exhibe un
comportamiento mediante la invocación de un método [7].

La proactividad es una característica muy beneficiosa para
el software actualmente, se desea que los programas trabajen
por las personas con sólo saber sus intereses. Con la
proactividad se pueden obtener asistentes personales en las
computadoras que ayuden en la búsqueda de información [8]
y a la hora de la toma de decisiones [9]. En la vigilancia
tecnológica la proactividad es muy provechosa [10]. Según
Henderson-Seller es posible obtener un sistema híbrido

Patrones de implementación para incluir
comportamientos proactivos

Mailyn Moreno, Alternán Carrasco, Alejandro Rosete y Martha D. Delgado

E

75 Polibits (47) 2013ISSN 1870-9044; pp. 75–88

agente + objetos, donde se tenga en un software orientado a
objeto con características de los agentes [3].

Se han desarrollado trabajos con patrones para la
orientación a agentes con son [11], [12] pero estos no se
enfocan en la implementación, o en problemas medulares
como la proactividad.

En este trabajo se hace una propuesta de patrones de
implementación que utilizan como base los patrones de diseño
de la orientación a objetos y las recomendaciones de trabajos
de patrones para la orientación a agentes para incorporar
proactividad a un software. Se aprovecha las ventajas que
provee la filosofía y las plataforma de desarrollo de agentes
para incluir este comportamiento. Se desarrolla un caso de
estudio sobre un observatorio tecnológico para aplicar los
patrones propuestos.

II. INGENIERÍA DE SOFTWARE
La ingeniería de software es el uso de los principios de

ingeniería robustos, dirigidos a obtener software económico
de gran fiabilidad, además de ser capaces de trabajar sobre las
máquinas reales con las que se cuentan. En el desarrollo de un
software es fundamental o casi imprescindible utilizar los
principios de la ingeniería de software. La misma comprende
todos los flujos de trabajo dentro el desarrollo de un software,
el análisis, el diseño del sistema, la implementación, las
pruebas, el control de versiones entre otros [13].

La ingeniería de software ha evolucionado por diferentes
etapas para llegar a lo que existe hoy en día. Por ejemplo pasó
por el enfoque estructurado, luego llegó el enfoque orientado
a objetos. El paradigma orientado a objetos fue un cambio en
la forma de pensar acerca del proceso de descomposición de
problemas [7]. Un objeto encapsula estados (valores de datos)
y comportamientos (operaciones). En la programación
orientada a objetos la acción se inicia mediante la trasmisión
de un mensaje al objeto. Un objeto exhibirá su
comportamiento mediante la invocación de un método como
respuesta a un mensaje [7].

El enfoque orientado a objetos está lejos de ser perfecto
para el desarrollo de un software, pero para la mayoría de los
desarrolladores es lo mejor que existe para el desarrollo de los
mismo [4]. En nuestros días hay una tendencia elevada de
utilizar enfoques orientados a objetos en todos los sistemas
que se construyen, debido a las facilidades que brinda para la
reutilización del código [14].

En el desarrollo del software orientado objeto ha tomado
auge la utilización del Proceso Unificado de Desarrollo (RUP,
Rational Unified Process) [4], que es una propuesta de
proceso para el desarrollo de software orientado a objetos que
utiliza UML (Unified Modelling Language) [15], [16] como
lenguaje que permite el modelado de sistemas con tecnología
orientada a objetos.

RUP es un proceso de desarrollo dirigido por casos de uso.
Según [4] “Un caso de uso especifica una secuencia de
acciones, incluyendo variantes, que el sistema puede llevar a

cabo, y que producen un resultado observable de valor para un
actor concreto”. La comunicación para iniciar un caso de uso
es a través de un mensaje o petición de un actor. Esto implica
que los mismos no son autoiniciables, no tienen la iniciativa
de hacer algo sin una petición u orden. Este comportamiento
es intrínseco en la orientación a objetos porque los objetos
trabajan para dar respuesta a un mensaje.

A. Tendencias de la Computación
La historia de la computación en la actualidad se ha

caracterizado por cinco importantes y continuas
tendencias [1]:

1. Ubicuidad
La ubicuidad es una consecuencia de la reducción constante

en el costo de la computación, posibilitando introducir el
poder de procesamiento en los lugares y con dispositivos que
no han sido rentables hasta ahora.

2. Interconexión
Hace dos décadas los sistemas de computadoras eran

entidades generalmente aisladas, solo se comunicaban con los
operadores humanos. Los sistemas de computadora hoy en día
se conectan a una red en grandes sistemas distribuidos.
Internet es el claro ejemplo en que se evidencia la dificultad
de encontrar computadoras que no tengan la capacidad y
necesidad de acceder a Internet.

3. Inteligencia
Esta tendencia está dirigida hacia sistemas cada vez más

complejos y sofisticados. Es por ello que la complejidad de
las tareas que es capaz el ser humano de automatizar y la
delegación en las computadoras ha crecido regularmente.
4. Delegación

La delegación implica que se le dé el control a sistemas
informáticos de tareas cada vez más numerosas e importantes.
Se observa con regularidad que se delegan tareas a los
sistemas de computadoras como pilotear aeronaves.

5. Orientación a humano
Esta última tendencia trata acerca del trabajo constante de

aumentar el grado de abstracción de las metáforas que se usan
para entender y usar las computadoras. Estas se acercan cada
vez más a la forma humana de actuar, que reflejen la forma en
que el humano entiende el mundo. Esta tendencia es evidente
en todas las formas en que se interactúa con las computadoras.

B. Retos
Ante las nuevas tendencias, la orientación a objetos y RUP

tratan de adaptarse a los requisitos de los sistemas distribuidos
abiertos. Uno de los autores del conocido RUP, Grady Booch,
ha planteado la necesidad de nuevas técnicas para
descomponer (dividir en pedazos más pequeños que puedan
tratarse independientemente), abstraer (posibilidad de modelar
concentrándose en determinados aspectos y obviando otros
detalles de menor importancia), organizar jerárquicamente
(posibilidad de identificar organizaciones, gestionar la
relaciones entre los componentes de la misma solución que

76Polibits (47) 2013 ISSN 1870-9044

Mailyn Moreno, Alternán Carrasco, Alejandro Rosete, and Martha D. Delgado

incluso permitan su tratamiento de grupo como un todo según
convenga y ver cómo lograr que entre todos se haga la
tarea) [17].

En esta misma línea de desarrollo de software para
ambientes distribuidos cada día toma más fuerza un
paradigma que muchos consideran como el próximo paso de
avance en la tecnología de desarrollo de software: los
agentes [17].

Construir software que resuelvan problemas de negocios
actuales no es una tarea fácil. Al incrementarse las
aplicaciones sofisticadas demandadas por diversos tipos de
negocios y competir con un ventaja en el mercado las
tecnologías orientadas a objetos pueden ser complementada
por las tecnologías orientas a agentes [3].

III. AGENTES
Aunque no hay total unificación en cuanto a qué es un

agente, un intento de unificar los esfuerzos para el desarrollo
de esta tecnología puede encontrarse en FIPA (Foundation for
Intelligent Phisical Agents) [18] que los define como una
entidad de software con un grupo de propiedades entre las que
se destacan ser capaz de actuar en un ambiente, comunicarse
directamente con otros agentes, estar condicionado por un
conjunto de tendencias u objetivos, manejar recursos propios,
ser capaz de percibir su ambiente y tomar de él una
representación parcial, ser una entidad que posee habilidades
y ofrece servicios, que puede reproducirse, etc. [1].

De forma general, varios autores reconocen en los agentes
diversas propiedades, entre las que se destacan el ser
autónomos, reactivos, proactivos y tener habilidad social [17],
[19], [20].

Los agentes brindan una vía efectiva para descomponer los
sistemas complejos, son una vía natural de modelarlos y su
abstracción para tratar las relaciones organizacionales es
apropiada para estos sistemas [2].

Franklin, después de estudiar doce definiciones, llegó a la
conclusión que los agentes tienen entre sus propiedades
principales la autonomía, estar orientados a metas, ser
colaborativos, flexibles, autoiniciables, con continuidad
temporal, comunicativos, adaptativos y móviles. Agrega que
un agente autónomo es un sistema situado en un ambiente que
percibe el ambiente y actúa sobre él, en el tiempo, según su
agenda propia y de esta manera produce efectos en lo que él
mismo podrá sentir en el futuro [21].

Russel y Norvig, tienen una visión más flexible de los
agentes, como una herramienta para analizar sistemas y no
como una característica abstracta que divida al mundo en
agentes y no-agentes [22].

De forma general las anteriores definiciones son válidas,
con distintos grados de amplitud y reflejando aspectos
diferentes, aunque ninguna entra en contradicción con las
otras. Se puede decir que las propiedades fundamentales de
los agentes son: autonomía, reactividad, proactividad y
habilidad social. Las mismas se pueden resumir como
sigue [1].

1. Autonomía
Actúan totalmente independientes y pueden decidir su

propio comportamiento, particularmente como responder a un
mensaje enviado por otro agente.

2. Reactividad
Perciben del entorno y responden a los cambios de éste.

3. Proactividad
No sólo actúan en respuesta a su ambiente, sino que son

capaces de tener comportamiento orientado a metas y
objetivos. Pueden actuar sin que exista una orden externa,
tomando la iniciativa.

4. Habilidad Social
Tienen la capacidad de interactuar con otros agentes

mediante algún mecanismo de comunicación. Esto le permite
lograr metas que por sí solos no puede lograr.

Lo novedoso de los agentes es que pueden ser proactivos,
tienen un alto grado de autonomía y están situados en un
entorno con el que interactúan. Esto se hace especialmente
cierto en áreas como ambientes inteligentes, negocio
electrónico, servicios Web, bioinformática, entre otras. Estas
áreas demandan software que sean robustos, que puedan
operar con diferentes tipos de ambientes, que puedan
evolucionar en el tiempo para responder a los cambios de los
requisitos, entre otras características.

La mayor diferencia del enfoque orientado a agentes con el
enfoque orientado a objetos, es que los agentes pueden tener
autonomía, mostrar comportamientos proactivos que no se
puedan predecir completamente desde el inicio [23].

Uno de los retos que enfrenta la orientación a objetos
además, es sencillamente que no permite capturar varios
aspectos de los sistemas de agentes. Es difícil capturar en un
modelo de objetos nociones de los agentes como acciones que
se hacen proactivamente o reacciones dinámicas a un cambio
de su entorno.

Es la proactividad una de las características más distintivas
de los agentes [1], [24]. La proactividad es un
comportamiento dirigido por metas. El agente trabaja para
alcanzar una meta. El comportamiento proactivo permite que
se le pase las metas al software y este trabaje para cumplirlas
cuando tenga las condiciones para hacerlo.

Los agentes al tener habilidad social normalmente no se les
encuentra solos en un sistemas, sino que un sistema puede
estar compuesto por más de un agente. Los Sistemas
Multiagente (SMA) están compuestos por agentes que tienen
conocimiento sobre su entorno, que cumplen con objetivos y
metas determinadas por sus responsabilidades. Estos agentes
no son independientes aunque sí autónomos en mayor o
menor medida. Son entidades de un todo, donde pueden
interactuar entre ellos informando y consultando a otros
agentes teniendo en cuenta lo que realiza cada uno de ellos,
llegando a ser capaces de conocer el papel que tienen todos
dentro del sistema según la capacidad que cada uno tenga de
actuar y percibir [1].

77 Polibits (47) 2013ISSN 1870-9044

Patrones de implementación para incluir comportamientos proactivos

Un aspecto clave para el desarrollo de los SMA ha sido la
especificación de los lenguajes de comunicación de agentes
(ACL por sus siglas en inglés) [25]. Un ejemplo de ACL es
FIPA-ACL [26], [27],donde se define una biblioteca con una
lista de actos comunicativos estándares, cada uno descrito con
los parámetros y sus significados, junto a especificaciones en
una lógica de precondiciones y efectos racionales. Además,
los mensajes pueden ser descritos según un acto
comunicativo, una acción ejecutada en un contexto
determinado que implica un grupo de consecuencias, que
permite a los agentes entender la intención del mensaje
recibido, en la forma de compromisos, derechos y
comportamientos.

Para el desarrollo de sistemas multiagente existen varias
plataformas de desarrollo. JADE1 está entre las más conocida
y utilizada de las plataformas por las facilidades que brinda,
entre las que están permitir el desarrollo de aplicaciones de
agentes en el cumplimiento con las especificaciones FIPA
para sistemas multiagente [28].

La plataforma de agentes JADE trata de mantener en alto el
funcionamiento de un sistema de agentes distribuidos con el
lenguaje Java. De acuerdo con el enfoque de sistemas multi-
agente, una aplicación sobre la base de la plataforma JADE se
compone de un conjunto de agentes cooperantes que se
pueden comunicar entre sí a través del intercambio de
mensajes. Cada agente está inmerso en un ambiente sobre el
que puede actuar y en los cuales los acontecimientos pueden
ser percibidos. El ambiente puede evolucionar de forma
dinámica y los agentes aparecen y desaparecen en el sistema
de acuerdo a las necesidades y los requisitos de las
aplicaciones. JADE proporciona los servicios básicos
necesarios para la distribución de aplicaciones en el ambiente
permitiendo a cada agente descubrir a otros dinámicamente y
comunicarse con ellos [29].

Para desarrollar un sistema multiagente los desarrolladores
necesitan implementar algunas funcionalidades que son de
vital importancia para la ejecución del sistema. Entre las
características más comunes están las siguientes:

1. Ejecución y control de la plataforma que contiene a los
agentes.

2. Gestionar el ciclo de vida de los agentes.
3. Comunicar los agentes que viven dentro del sistema.

3.1. Enviar y recibir mensajes desde y hacia otros
agentes.

3.2. Procesar el mensaje y tomar acciones dependiendo
de su contenido.

4. Comunicarse con los agentes coordinadores de la
plataforma.
4.1. Ver el estado de algún módulo del sistema.
4.2. Buscar un agente para ver su estado.

1 Java Agent DEvelopment Framework, http://jade.tilab.com

IV. PATRONES
El desarrollo de software basado patrones y modelos está

rehaciendo el mundo de los desarrolladores de software [6].
De acuerdo con el diccionario de inglés Oxford2 un patrón

“es una forma lógica o regular”, “un modelo”, “el diseño o las
instrucciones para hacer algo” o “un ejemplo excelente”.
Todos estos significados se aplican en el desarrollo de
software, según [30] la tercera definición es la más acertada.

Christopher Alexander dice que, “Cada patrón describe un
problema que ocurre una y otra vez en nuestro entorno,
entonces describen el núcleo de la solución para ese problema,
de manera tal que usted pueda utilizar esta solución un millón
de veces, sin tener que hacerlo dos veces de la misma
forma” [31]. Aunque es una definición para la arquitectura y
la construcción, se puede utilizar para el desarrollo de
software. Los patrones, según la disciplina de la Ingeniería de
Software en que se manifiesta el problema que resuelven,
pueden ser de diseño, de implementación, etc. [5], [14].

“Los patrones de diseños son descripciones de las
comunicaciones entre objetos y clases que son personalizables
para resolver un problema general de diseño en un contexto
particular” [5].

Los patrones de implementación son un módulo de
software único en un lenguaje de programación en particular.
Una característica crucial es que son fácilmente reconocibles
por el software, lo que facilita la automatización [14], [32].

Los patrones de implementación comparten muchos
beneficios con los patrones de diseño por ejemplo establecen
un vocabulario. Como los patrones de diseño, los patrones de
implementación proveen un medio para organizar y trasmitir
una base de conocimiento.

Según Beck “Los patrones de implementación proveen un
catálogo de problemas comunes en programación y la forma
en que […] se pueden resolver estos problemas” [14].

Los patrones de implementación permiten que el trabajo de
los programadores sea más efectivo a medida que gastan
menos tiempo en partes mundanas y repetitivas de su trabajo y
le dedican más tiempo a resolver problemas verdaderamente
únicos [14].

En general, un patrón tiene cuatro elementos esenciales [5]:
1. Nombre del patrón

El nombre del patrón es un indicador que se usa para
describir un problema, sus soluciones y consecuencias en
pocas palabras.
2. El problema

El problema describe cuándo aplicar el patrón, explicando
el problema y su contexto.
3. La solución

La solución se compone de los elementos que resulten el
problema, sus relaciones, responsabilidades y las
colaboraciones.

2 Oxford: Oxford English Dictionary, http://www.oed.com

78Polibits (47) 2013 ISSN 1870-9044

Mailyn Moreno, Alternán Carrasco, Alejandro Rosete, and Martha D. Delgado

4. Las consecuencias
Las consecuencias son los resultados y los cambios

resultantes de aplicar el patrón lo que incluye su impacto
sobre la flexibilidad de un sistema, la extensibilidad o la
portabilidad.

Los patrones como idea y principio se pueden utilizar tanto
en la orientación a objetos [5] y en la orientación a agentes
[11], [12], [33]. En la orientación a objetos los patrones más
conocidos y utilizados son los patrones de diseño, ya que los
mismos se pueden llevar hasta la implementación.

A. Patrones de Diseño en la orientación a objetos
Los patrones de diseño pueden ser de diferentes tipos

dentro de los cuales se encuentran los creacionales, los
estructurales y los de comportamiento [5], [6].

1. Patrones de creación:
Ayudan a hacer un sistema independientemente de cómo

son creados, compuestos y representados sus objetos. Un
patrón creacional de clase utiliza la herencia para cambiar la
clase que es instanciada, mientras que un patrón creacional de
objeto delegará la particularización a otro objeto. Dentro de
estos se encuentran: abstract factory, builder, factory method,
prototype y singleton.

2. Patrones estructurales
Los patrones estructurales se relacionan con el modo en que

las clases y objetos son compuestas para formar estructuras
más grandes. Las clases de patrones estructurales usan, por
ejemplo, la herencia para componer o implementar interfaces.
Por ejemplo considere como la herencia múltiple mezcla dos
o más clases en una; el resultado es una clase que combine las
propiedades de su clase padre. Este patrón es particularmente
útil para hacer bibliotecas de clases independientes
desarrolladas para trabajar juntas. Algunos de estos patrones
estructurales son: adapter, bridge, composite, decorator,
facade, flyweight y proxy.

3. Patrones de comportamiento
Los patrones de comportamiento tienen relación con los

algoritmos y la asignación de responsabilidades entre objetos.
Este no solo describe patrones de objetos o clases, sino
también la comunicación entre ellos. Estos patrones
caracterizan flujos de control que son difíciles de seguir en
tiempo de ejecución. Cambian su enfoque de flujo de control
para dejar que se concentre en la manera en que los objetos
son interconectados. Dentro de estos se localizan los
siguientes patrones: chain of Responsibility, command,
interpreter, iterator, mediator, memento, observer, state,
strategy, template method y visitor.

En este punto se quiere hacer énfasis en el patrón Observer,
conocido también por Dependencia o Publicación-
Suscripción. Este patrón define una dependencia de uno a
muchos entre objetos, de modo que cuando un objeto cambia
de estado, todas sus dependencias son notificadas y
actualizadas automáticamente.

Fig. 1. Ejemplo del patrón Observer.

Fig. 2. Diagrama de actividad del patrón Observer.

La figura 1 muestra un caso típico del patrón Observer. Se
trata de un centro de noticias al que están inscritos usuarios
con sus preferencias. Al recibir noticias nuevas, el centro
distribuye las mismas según la preferencia de los usuarios
inscritos.

En la figura 2 se muestra el flujo de trabajo de los
componentes en el sistema. Esta figura 2 muestra el ciclo de
comportamiento del patrón Observer. Se inicia con la adición
de observadores, luego la instancia Observable monitorea el
entorno para ver si han ocurrido cambios. Si existe algo que
deba ser notificado a los observadores, envía un mensaje con
los datos necesarios para que las instancias de observadores
actúen en consecuencia. Este proceso se repite periódicamente
en el tiempo.

B. Patrones en la orientación a agentes
En la orientación a agentes se han propuesto patrones de

diseño para resolver varios problemas propios de los sistemas
multiagente.

79 Polibits (47) 2013ISSN 1870-9044

Patrones de implementación para incluir comportamientos proactivos

Uno de los primeros trabajo es propuesto en [34] y está
enfocado en agentes móviles con Aglets3. Ese trabajo incluye
tres clasificaciones muy orientadas a agentes móviles. Están
los patrones de viaje (traveling) que están relacionados con el
reenvio y enrutamientos de los agentes móviles, patrones de
tareas (task) para estructurar el trabajo con los agentes y
patrones de interacción (interaction) para localizar y facilitar
las interacciones entre los agentes. Los patrones están
desarrollados en Java y enfocados en el diseño. Utilizan
diagramas de clases y de interacción para exponerlos y
explicarlos.

En ese trabajo se presentan dos aplicaciones basadas en
agentes (File Searcher y Enhanced File Searcher), donde se
emplean combinación de patrones. Esas aplicaciones se
utilizan para la implementación de agentes móviles que
buscan ficheros con cierta cadena en el nombre y que pueden
viajar por varios servidores para hacer la búsqueda. En ambos
casos se basan en una filosofía reactiva donde los agentes
buscan lo que le pide un "master" y lo devuelven, pero no
conservan ninguna memoria de esa búsqueda. Tampoco se
modela una solución a la gestión de cambios en los ficheros
almacenados en los servidores sin necesidad de volver a
enviar la búsqueda [34].

En [11] y [35] se enfatiza en la necesidad de los patrones de
diseño en orientación a agentes, como forma de recolectar y
formalizar experiencias para soluciones basadas en este
paradigma. En ese trabajo se definen 4 clases de patrones:
metapatrones, patrones metafóricos, patrones arquitecturales y
antipatrones. Siguiendo esta clasificación se desarrolla una
propuesta de 11 patrones. Según Sauvage muchos patrones
orientados a agentes son realmente patrones orientados a
objetos, ya que no van a aspectos singulares de la orientación
a agentes, como la autonomía, las interacciones, entre otras
[11]. Además expresa que muchos patrones en la orientación a
agentes se enfocan en el diseño obviando la importancia de
tener patrones orientados a agentes en varías dimensiones
como el análisis o la implementación.

En [36] se presenta un esquema de clasificación
bidimensional de los patrones. En su clasificación según el
aspecto de diseño (clasificación horizontal), están los
estructurales, de comportamiento, sociales y de movilidad.
Según el nivel de diseño (clasificación vertical), están los
patrones de análisis de roles, patrones de diseño de agentes,
patrones de diseño de sistema, patrones de la arquitectura del
agente y los patrones de implementación del agente. Un
mérito importante de ese trabajo es que su clasificación es
amplia y cubre varios niveles de abstracción. Aunque los
patrones se presentan en términos de los conceptos de la
metodología ROADMAP [37] lo hace de una forma
abarcadora y general. Se exponen algunos ejemplos de
patrones de agentes y sus clasificaciones. Se enfatiza en que
esta clasificación se enfoca más en las nociones del paradigma
de agentes, no usando los de orientación a objetos. Entre los

3 Aglets, http://www.research.ibm.com/trl/aglets

campos que sugieren para describir los patrones están: el
aspecto de diseño (clasificación horizontal) y el nivel de
diseño (clasificación vertical) [36].

 Existen otros trabajos, tal es el caso del repositorio de
patrones propuesto por el grupo de desarrollo de la
metodología PASSI que propone un conjunto de patrones,
algunos ejemplos son [33], [38]:

− Patrones multiagente que están relacionados con la
colaboración entre dos o más agentes

− Patrones para un solo agente donde se propone una
solución para la estructura interna de un agente junto con
sus planes de realización de un servicio específico

− Patrones de comportamiento que proponen una solución
para agregar una capacidad específica al agente

− Patrones de especificación de acciones que agregan una
funcionalidad simple al agente.

Todos estos patrones son para desarrollar un sistema multi-
agente más robusto.

Sabatucci en el trabajo [12] se enfoca en patrones de diseño
y defiende que un aspecto importante de los patrones no es
usarlo solos, sino hacer una combinación de varios. En ese
trabajo se hace la formalización de los patrones con un
lenguaje que favorece la combinación. Los patrones que
propone están integrados a PASSI.

En ninguno de los patrones que se describen en los trabajos
anteriormente mencionados sobre patrones para la orientación
a agentes se hace énfasis en la proactividad o ambientes a
observar, sino en otras propiedades como la cooperación, la
comunicación, la estructura organizacional de los agentes u
otras. La mayoría de estos patrones se enfocan en el diseño y
no en la implementación. En esta dirección, no se conoce de
ningún trabajo enfocado en simplificar el trabajo con
JADE [39], encapsulando la solución de problemas comunes
en la construcción de un SMA.

Particularmente estos dos aspectos (la proactividad, y la
simplificación la configuración de JADE) son dos problemas
comunes en muchas soluciones basadas en SMA, para las
cuales no se conocen que hayan patrones definidos.

V. PATRONES DE IMPLEMENTACIÓN PARA INCLUIR
PROACTIVIDAD

En esta sección se proponen dos patrones de
implementación. El patrón Implementation_JADE se enfoca
en simplificar la configuración de JADE (para crear y manejar
agente) y el patrón Proactive Observer_JADE se enfoca en la
incorporación de proactividad. Estos patrones siguen las
recomendaciones de [11] y [36] de que los patrones en la
orientación a agentes se enfoquen a las propiedades singulares
de los agentes.

Como un patrón de implementación debe estar hecho en un
lenguaje de programación específico, se utiliza el lenguaje
Java, que es el utilizado por la plataforma JADE. Teniendo en
cuenta la consolidación alcanzada por JADE como plataforma

80Polibits (47) 2013 ISSN 1870-9044

Mailyn Moreno, Alternán Carrasco, Alejandro Rosete, and Martha D. Delgado

de software libre para el despliegue de un sistema multi-
agente y que está basada en el estándar FIPA, se decidió
utilizar dicha plataforma para la propuesta de los patrones.

El patrón Implementation_JADE respeta la idea de
Beck [14] de que los patrones de implementación traten de
que los programadores se enfoquen en lo que es realmente
singular de cada problema, ya que encapsula parte de la
complejidad del trabajo con JADE. Esto se muestra en el
ejemplo que se presenta en sección siguiente. El patrón
Implementation_JADE desarrollado se usa luego en varios
lugares y simplificó el trabajo evitando "trabajo mundano y
repetitivo" [14] y enfocando el esfuerzo en "problemas
realmente únicos" [14].

El patrón Proactive Observer_JADE respeta la sugerencia
de Sabatucci [12] de enfatizar en la composición de patrones
para crear nuevos patrones. Este patrón tiene relación con el
patrón Ecological Recogniser mencionado en [36]. Ese patrón
trata de inferir las intenciones de los agentes y se enfoca en el
descubrimiento. En el caso del Proactive Observer_JADE las
intenciones se conocen y se relacionan con un ambiente que
se observa. Esto no está concebido en Ecological Recogniser
en la forma de estar enfocado en la observación y la decisión
cuando la intención es conocida

En la presentación que sigue de ambos patrones se incluyen
los campos clasificación horizontal y clasificación vertical
sugerida en [36].

A. Descripción de los patrones de implementación en JADE
1. Patrón Implementation_JADE

Este patrón simplifica el uso y configuración de los
aspectos principales para el trabajo en la plataforma JADE. A
continuación se detallan los elementos esenciales del patrón:

Nombre del patrón: Implementation_JADE.
Problema: Específicamente, el patrón que aquí se describe

se debe utilizar cuando se quiera implementar las
características más comunes y que son de vital importancia
para la ejecución del sistema de un sistema multi-agentes
mencionadas en la sección III.

Solución: Este patrón utiliza la plataforma JADE para el
trabajo con los agentes, sirviendo como intermediario a las
funcionalidades que implementa JADE.

El patrón Implementation_JADE contiene 7 grupos de
operaciones:

1. Inicialización de la plataforma de agentes JADE.
1.1. Configurar algunos parámetros de funcionamiento

de la plataforma.
1.2. Crear los contenedores (son necesarios para colocar

los agentes dentro).
1.3. Ejecutar los agentes en los contenedores

correspondientes.
2. Unión a una plataforma ya existente.

2.1. En ocasiones es necesario tener a los agentes en

localidades físicas diferentes, por lo que hay que
ejecutar contenedores y agentes en una plataforma
que ya existía con anterioridad.

3. Volver a conectar a un agente que ha perdido a la
plataforma que lo maneja.
3.1. En el escenario en que un agente esté de forma

física en una localidad diferente, puede ser posible
que la plataforma colapse por alguna razón y sin
embargo, que sea necesario que los agentes sigan
trabajando de forma independiente.

3.2. Luego cuando la plataforma vuelva a funcionar, los
agentes pueden reincorporarse a su plataforma
correspondiente y socializar los resultados que
obtuvieron mientras trabajaban solos.

4. Implementar un comportamiento cíclico para poder
procesar los mensajes que recibe un agente determinado.
4.1. El desarrollador puede decidir qué tipo de mensaje

son aceptados.
4.2. Permite que el desarrollador procese el mensaje

como desee.
5. Todo el trabajo relacionado con enviar mensajes hacia los

agentes.
5.1. El desarrollador puede enviar mensajes a un agente

con una gran variedad de parámetros, que van desde
los más básicos a los más complejos.

5.2. La mayoría de las veces solo se necesita enviar un
mensaje sencillo a un agente conocido, pero en otras
ocasiones, el procesamiento es mayor.

6. Trabajo con el agente AMS (Agent Management Service)
6.1. El AMS tiene un registro de los agentes y sus

atributos.
6.2. Controla el buen funcionamiento de la plataforma.
6.3. Incluir maneras de interactuar con el AMS para

conocer datos sobre los agentes de la plataforma.
Ejemplo: saber dónde están los agentes para
comunicarse con ellos o el estado de un contenedor
determinado.

7. Trabajo con el agente DF (Directory Facilitator)
7.1. El control que tiene el DF sobre los agentes es

comparado con el de las páginas amarillas.
7.2. Con el DF se puede encontrar un agente que cumpla

con un atributo determinado siempre y cuando ese
agente se haya registrado con el DF.

7.3. Del mismo modo que con el AMS, aquí están las
posibles maneras de comunicarse con el DF para
obtener los datos que el desarrollador necesita.

Para lograr estas operaciones mencionadas anteriormente se
definieron un grupo de clases con funcionalidades generales.

Init_Platform inicializa la plataforma JADE con las
configuraciones que esta permite, como por ejemplo, el puerto
de conexión. Se encarga de crear los contenedores en los que
se almacenarán los agentes e inicializa los agentes.

81 Polibits (47) 2013ISSN 1870-9044

Patrones de implementación para incluir comportamientos proactivos

Join_Platform crea los contenedores y agentes externos, que
son subscritos a una plataforma que ha sido inicializada.

Work_DF contiene todo el trabajo que se realiza en
coordinación con el DF (Directory Facilitator), que es similar
a las páginas amarillas de la guía telefónica. Registra en el
directorio del DF el servicio que un agente ofrece, para
ofrecer la posibilidad de buscar agentes en esos registros.

Work_ACL engloba el trabajo que se realiza con el uso de
los mensajes ACL (Agent Communication Language).
Configura los mensajes con los parámetros que son
introducidos como: tipo de mensaje, el contenido del mensaje,
la identificación de los agentes involucrados en la
comunicación, el objeto que se quiere enviar, etc.

Work_AMS contiene todo el trabajo que se realiza en
coordinación con el AMS (Agent Management System).
Devuelve la descripción del agente que cumple con la
condición que el usuario desee.

Behaviour_Receive_Msg implementa un Cyclic Behaviour4,
para obtener y procesar los mensajes ACL que le llegan al
agente al que pertenece. Brinda la posibilidad de extender el
método "processMessage", que se ejecuta cuando se obtiene
un mensaje.

El diagrama de clase donde se exponen las principales
clases del patrón Implementation_JADE están en la figura 3
junto con las clases del otro patrón de implementación que
aquí se propone.

Consecuencias: Este patrón encapsula la capa de
abstracción que facilita la configuración del patrón Proactive
Observer_JADE.

Su objetivo es simplificar el desarrollo de un conjunto de
agentes, al tiempo que garantiza el cumplimiento de los
estándares a través de un amplio conjunto de servicios del
sistema y los agentes con JADE. Permite que los
desarrolladores puedan hacer uso de la tecnología de agentes
de una forma más sencilla

Clasificación horizontal: Estructural y social.
Clasificación vertical: Implementación del agente.

2. Patrón Proactive Observer_JADE
Este patrón utiliza los principios de patrón de

comportamiento Observer [5] y los combina con el patrón
Implementation_JADE.

Nombre del patrón: Proactive Observer_JADE.
Problema: Se utiliza el patrón en cualquiera de las

siguientes situaciones:
Cuando una abstracción tiene dos aspectos, uno en función

de las demás.
Cuando hay un cambio en una entidad, y es necesario

cambiar a los demás y no se sabe cuántas entidades más
habría que cambiar.

Cuando un entidad debe ser capaz de notificar a otras
entidades sin hacer suposiciones acerca de quiénes son estas
entidades.

4 Comportamiento implementado en JADE para efectuar una acción
indefinidamente.

Solución: Para implementar el patrón se necesitan de dos
entidades: “Observable” y “Observer”.

Entre los métodos más relevantes de la entidad
“Observable” están los siguientes:

1. Censar el ambiente cada determinado tiempo para
detectar algún cambio.

2. Gestionar una lista con los observadores que se
subscriban.

3. Notificar a los observadores con los datos
encontrados en el cambio ocurrido.

La entidad “Observer” tiene que tener métodos como:

1. Implementar el proceso de subscripción a la lista del
“Observable”.

2. Actualizar su estado interno.

Esta permite realizar una acción cuando se le notifique del
cambio.

Para lograr una implementación genérica del patrón con
agentes, se deben crear fundamentalmente dos entidades:
Observer y Observable. Los agentes que cumplirán con estos
roles tendrán la capacidad de comunicarse y actuar
autónomamente, pudiendo hasta cambiar su comportamiento
dependiendo de las situaciones a las que se enfrenten.

El Agente Observable debe tener una lista interna de los
agentes Observer para poder alertarlos de los cambios que
detecta. Además debe esperar los mensajes de subscripción de
los agentes Observer para poder sumarlos a la lista
mencionada y enviar la respuesta de la subscripción. Por
último debe tener la capacidad de enviar un mensaje a los
Observers con los datos necesarios del cambio encontrado.

El agente Observer tiene que conocer los Observables
existentes en el entorno para luego decidir a cual subscribirse.
Además debe actualizar su estado cuando le llegue un
mensaje con los datos que describen el cambio ocurrido y
actuar en consecuencia.

De forma general se necesita que estos agentes se ejecuten
en una infraestructura que gestione los mensajes y el ciclo de
vida de los agentes.

Como se describió anteriormente en el patrón
Implementation_JADE se implementaron un grupo de clases
para facilitar el trabajo con la plataforma de agentes JADE.
Sobre la base de estas clases se realizaron otras que ejecutan
las funcionalidades del patrón Proactive Observer_JADE para
incluir proactividad. De esta forma, los siguientes pasos deben
ejecutarse en el momento de comenzar a utilizar el patrón
Proactive Observer_JADE creado:

1. Iniciar la plataforma a través de la clase de apoyo
Init_Paltform.

2. Crear los contenedores que contienen a los agentes.
3. Añadir los agentes necesarios a los contenedores.
4. El usuario programador debe implementar las

acciones del Observable y los Observers. En este
caso la clase creada para este fin es Agent_Actions.

82Polibits (47) 2013 ISSN 1870-9044

Mailyn Moreno, Alternán Carrasco, Alejandro Rosete, and Martha D. Delgado

Fig. 3. Diagrama de clases de los patrones Implementation_JADE y Proactive_Observer_JADE.

Se implementó el patrón Proactive_Observer_JADE

utilizando agentes, con las clases que proporciona JADE,
logrando que el patrón funcione en un ambiente distribuido. A
continuación se explican las clases que le dan las
funcionalidades al patrón.

Agent_Actions tiene un método ObserverAction que se
ejecuta cuando al agente Observer le llega un mensaje y un
método ObservableAction que censa el ambiente cada
determinado tiempo. La clase está diseñada para que el
usuario coloque el código de las acciones que desea realizar
en cada caso.

ObservableAgent extiende de Agent, escucha los mensajes
del tipo Subscribe [27] que le llegan de un Observer. Cuando
un mensaje de este tipo es recibido, se decide si adicionarlo a
la lista de Observers o no. Si hay algún cambio se notifica a
los Observers que se encuentren en la lista. La observación
del ambiente se realiza usando la implementación del
ObservableTicker.

ObserverAgent extiende Agent, al ejecutarse se subscribe a
un Observable y espera el mensaje de respuesta de si fue
subscrito o no. Espera por la notificación del Observable y
realiza alguna acción.

ObservableTicker extiende el funcionamiento de
“TickerBehaviour” de JADE. Brinda la posibilidad de
extender el método "onTick". Este método se encarga de cada
cierto tiempo verificar si hubo algún cambio en el entorno.

Las clases que heredan de estas tres últimas, llamadas con el
sufijo My, son aquellas que el programador debe implementar
para que realicen las operaciones que se necesiten. Por
ejemplo, como revisar el ambiente y qué hacer cuando al
Observer le llega la notificación de que Observable encontró
algo monitoreando el ambiente.

La figura 3 muestra el diagrama de las clases principales del
patrón Implementation_JADE y del patrón Proactive_
Observer_JADE. La figura 4 describe el modelo en capas que
muestra cómo se relacionan las clases.

83 Polibits (47) 2013ISSN 1870-9044

Patrones de implementación para incluir comportamientos proactivos

Fig. 4. Diagrama en capas de la relación entre las clases.

Fig. 5. Diagrama de secuencia del funcionamiento de Proactive Observer_JADE

El funcionamiento de las entidades que se ejecutan en el
patrón Proactive_Observer_JADE puede entenderse mejor en
el diagrama de secuencia de la figura 5. Se indican las
diferentes llamadas a las funciones de los agentes para que se
vea la interacción entre ellos.

Las clases representadas en este diagrama interactúan de
manera que ObservableAgent llama al constructor de
ObservableTicker, para que así se pueda censar el ambiente

cada cierto tiempo. ObserverAgent envía un mensaje a
ObservableAgent para subscribirse a él y espera la respuesta
del mismo.

ObservableTicker llama al método “onTick” para censar el
entorno y ver si ha ocurrido algún cambio. Si hay cambios
entonces notifica a ObservableAgent para que envíe un
mensaje a los observadores de su lista, los que a su vez
actualizan su estado.

84Polibits (47) 2013 ISSN 1870-9044

Mailyn Moreno, Alternán Carrasco, Alejandro Rosete, and Martha D. Delgado

Fig. 6. Vista del despliegue del Proactive_Observer_JADE

Entre las funcionalidades más importantes del
Proactive_Observer_JADE, que utiliza como base el
Observable, es la gestión de los Observers, avisándoles de los
cambios encontrados. A su vez, los Observers deben
subscribirse a un Observable cuando se inician.

De acuerdo a estas características se implementó un agente
Observable que al iniciar espera un mensaje de subscripción
de los sucesores y ejecuta un comportamiento “Ticker” que
censa el ambiente para informar de algún cambio ocurrido.
Cuando inicia el Observer, él conoce quien debe ser su
predecesor, y le envía un mensaje de subscripción. El ciclo de
ejecución del patrón sigue los pasos explicados anteriormente
y se muestran en la figura 6.

Los cuadrados de color rojo representan los agentes que se
están ejecutando en la plataforma JADE. Las flechas son los
mensajes que son enviados entre ellos en el transcurso del
tiempo. Además los mensajes de un mismo color significan
que uno es respuesta del otro. Los primeros dos mensajes son
parte del funcionamiento de JADE, y como se puede observar
las flechas van desde el ams al df y a otro agente. Esto
significa que el primero está reportando alguna información
interna de JADE. Para un mejor entendimiento, se detallarán
solo los mensajes relacionados con el agente Observer 1.
Pero cabe destacar que los demás Observer también realizan
las mismas actividades.

En la figura 6 se muestran los mensajes numerados, a
continuación se explican algunos de ellos según esa
numeración:
3: primer mensaje relacionado con el patrón, donde el
Observer 1 se registra al directorio del df. Luego el df
informa de que el registro fue realizado.
7: respuesta recibida del mensaje 3.

10: enviado desde el Observer 1 hacia el ams para pedir la
identificación del agente Observable al cuál quiere
subscribirse.
14: respuesta recibida del mensaje 10.
19: el Observer 1 se subscribe a Observable.
21: el Observer 1 recibe la respuesta de la subscripción.
27: Observable le informa a Observer 1 del cambio
encontrado.
Consecuencias: A partir del uso del patrón se garantiza que
las entidades Observer reciban una notificación encontrada
por la entidad Observable y puedan tomar decisiones o
realizar una acción. Con el uso del patrón se logra además el
funcionamiento de los agentes con un despliegue distribuido.
Clasificación horizontal: Estructural, de comportamiento y
social.
Clasificación vertical: Implementación del agente.

VI. APLICACIÓN DE LOS PATRONES EN UN CASO DE ESTUDIO
La proactividad se puede utilizar en cualquier sistema para

aumentar sus prestaciones de cara al usuario. Algunos agentes
pueden verse como un “objeto astuto” o un “objeto que puede
decir no”. Viéndolo así un sistema híbrido agente+objetos es
completamente viable [3].

Para lograr incorporar comportamientos proactivos en un
software orientado a objetos, lograr una hibridación y manejar
la proactividad en software orientados a objetos se pueden
utilizar los dos patrones de implementación propuestos.

Un caso a tener en cuenta la proactividad es en la
construcción de un observatorio tecnológico. Un observatorio
es una herramienta para realizar vigilancia tecnológica, que
reconoce cambios en el dominio de información que procesa,
gestiona y observa, por lo tanto, teniendo en cuenta
comportamientos previos, puede avisar con antelación de
ciertas variaciones o diferencias en parámetros que evalúa,
generando un conocimiento con un alto nivel de importancia
al ser actual y novedoso, que puede ser utilizado por los
receptores que tengan interés en esa información [40].
Una situación que aún no tiene una respuesta acertada, es que
muchos OT operan gracias a las personas que trabajan
dándole soporte, buscando, procesando, resumiendo,
colocando noticias en los sitios web e informando a los
clientes de sus descubrimientos. El desarrollo y buen
funcionamiento de un OT enfrenta no sólo el problema
relacionado con el número y nivel académico del personal que
lo integra [40]. También es necesario que los OT tengan la
capacidad de ser proactivos en cuanto a la búsqueda de
información, de estar orientados a metas a partir de las
necesidades de sus usuarios. Los observatorios deben utilizar
un método claro, riguroso y neutro de alerta temprana para sus
usuarios [10].

Descripción general del Observatorio Tecnológico: El
sistema se divide en una capa cliente y una capa que
representa al observatorio como se ve en la figura 7. El
sistema tiene agentes personales, estos son una frontera entre

85 Polibits (47) 2013ISSN 1870-9044

Patrones de implementación para incluir comportamientos proactivos

Fig. 7. Vista esquemática del observatorio.

el usuario y el observatorio, son los encargados de representar
al usuario en todo momento. El Agente Personal (AP) se
dedica a gestionar la información que el usuario necesita y lo
hace a partir de sus intereses. También tiene un repositorio, al
cual se subscriben los AP, de esta manera, publicando la
documentación perteneciente a las línea de investigación de
sus usuarios.

Otros pueden acceder a ella cuando sea necesario. Además
tiene agentes Fuentes de Datos que están alerta a los pedidos
de descarga y búsqueda de los AP. Si alguien necesita una
información en específico ésta es pedida a su Agente
Personal, que busca en las fuentes de datos disponibles y
envía la respuesta al usuario.

Problemas: En este sistema se presentan dos problemas
fundamentales que son tratados por los patrones descritos en
este documento.

1. El primero está relacionado con la dificultad del trabajo
con JADE de forma general, ya sea la gestión de los
agentes, los contenedores, la plataforma, envío y
recepción de mensajes ACL, etc.

2. Otro problema se encuentra cuando un especialista
necesita una información que es relevante para su trabajo
y debe esperar a que en la planificación de su Agente
Personal, se realice la búsqueda de recursos. Esto
conlleva a que el especialista debe esperar un tiempo para
recibir resultados de la búsqueda.

Se quiere que de forma periódica el AP haga un
reconocimiento del entorno para encontrar información nueva
y relevante para su usuario. Primero, debe comunicar con
otros AP y si estos no dan una respuesta satisfactoria debe
pasar a tramitar sus pedidos con el Agente Fuente de Datos.
Cuando se encuentra algo nuevo el AP debe enviar un correo
electrónico a su usuario con los resultados.

Soluciones: En la implementación del sistema se utilizó el
patrón Implementation_JADE y el patrón Proactive_
Observer_JADE. A continuación se explica cómo fueron
usados cada uno.

1. El sistema del Observatorio utiliza las clases de apoyo
para ejecutar la Plataforma JADE, brindadas por el patrón
Implementation_JADE, para inicializar los contenedores
y los agentes, para comunicarse con los agentes del
servidor JADE (ams y df), además envía y recibe los
mensajes ACL entre agentes. El programador realiza
todas estas funciones de forma sencilla y flexible con el
mínimo esfuerzo posible.

2. Se implementó un agente FuentedeDatos_Agent que
extiende las funcionalidades de la clase ObservableAgent,
que por las características de este sistema la función que
efectúa es gestionar un sitio (repositorio). También se
implementaron tres agentes Personal_Agent que
extienden la clase ObserverAgent, que en este sistema
atiende a los especialistas. Ambas clases se vinculan por
medio del patrón Proactive_Observer_JADE.

De forma natural el agente personal solicita la búsqueda de
documentos a los agentes fuentes de datos del sistema, de
forma que los últimos realizan búsquedas en sus
correspondientes sitios y devuelven una lista de aquellos
documentos que cumplan con las palabras pedidas por los
usuarios.

Al utilizar el patrón Proactive_Observer_JADE una persona
puede desear subscribirse a un sitio, consiguiendo que el
agente Fuente de Dato que gestiona ese sitio pueda enviar
resultados en el momento en que los encuentra al Agente
Personal que atiende a ese usuario. Este último entonces envía
un correo con los resultados encontrados antes de tener que
realizar una búsqueda que viene condicionada por la
planificación en su ciclo.

Los tres Agentes Personales asumen el rol de Observer y el
Agente Fuente de Datos el de Observable. En la figura 8 se
muestra como los Agentes Personales se subscriben al Agente
Fuente de Datos de la misma forma en que fue explicado el
patrón Proactive_Observer_JADE anteriormente. En los
mensajes del 31–33 están los envíos de informaciones
encontradas para estos tres especialistas, en el momento en
que se encuentran los documentos para ellos.

En la figura 9 se muestra un ejemplo del correo enviado por
el Agente Personal al especialista.

Todo la información relevante a un usurario se obtiene de
forma proactiva, con solo decir sus intereses. El agente
personal que representa al usuario con sus intereses,
utilizando el patrón Proactive_Observer_JADE, se mantiene
buscando cada cambio, en los sitios que se escogen. Cuando
hay un cambio, el usuario recibe un correo con lo nuevo
encontrado en los sitios o lo que ha socializado otro agente
personal.

VII. CONCLUSIONES
En este trabajo se propuso dos patrones de implementación

utilizando como base el patrón de diseño de la orientación a
objeto Observer y siguiendo la filosofía de agentes. Para
desarrollar el patrón Implemetation_JADE se tomó como base
la plataforma de desarrollo de agentes JADE y en el mismo se

86Polibits (47) 2013 ISSN 1870-9044

Mailyn Moreno, Alternán Carrasco, Alejandro Rosete, and Martha D. Delgado

Fig. 8. La pantalla de ciclo de vida de los patrones Implementation_JADE y el patrón Proactive_Observer_JADE en el Observatorio

Fig. 9.Correo electrónico de resultado de la ejecución de los patrones
Implementation_JADE y el patrón Proactive_Observer_JADE en el

Observatorio

da una capa de abstracción para el trabajo con las
funcionalidades de agente de una forma sencilla. Este patrón
sirvió como núcleo para el patrón Proactive_Observer_JADE
permite incluir entidades que a partir de una meta y cambios
en el ambiente que revisan se realice una acción proactiva.

Ambos patrones se utilizaron en un caso de estudio
relacionado con problemas en un observatorio tecnológico. Al

aplicar los patrones en el caso de estudio se pudo comprobar
que se pudo agregar de forma satisfactoria un comportamiento
proactivo beneficioso para el usuario. La inclusión de
características proactivas en un Observatorio Tecnológico
mejora el rendimiento del mismo, ya que el sistema es capaz
de adelantarse a las solicitudes de información de los usuarios.
Los patrones propuestos presentan una alta reutilización para
los programadores que deseen utilizarlos, debido a la facilidad
del lenguaje Java con el que fueron desarrollados. Con los
mismos se puede incorporar proactividad en un sistema y
manejar de una forma sencilla los agentes.

Referencias
[1] M. Wooldridge, “An Introduction to MultiAgent Systems,” 2nd ed.

John Wiley & Sons, 2009.
[2] N.R. Jennings. (2000). “On agent-based software engineering,”

Artificial Intelligence, 117(2), pp. 277-296.
[3] B. Henderson-Sellers and P. Giorgini, “Agent-Oriented

Methodologies,” 1st ed. Hershey: Idea Group Inc, 2005.
[4] I. Jacobson, G. Booch and J. Rumbaugh, “The Unified Software

Development Process,” reprint ed. Prentice Hall, 2012.
[5] E. Gamma, Design Patterns: “Elements of Reusable Object-oriented

Software,” ed. Pearson Education, 2004.
[6] A. Shalloway and J.J. Trott, “Design Patterns Explained: A New

Perspective on Object-Oriented Design,” ed. Addison-Wesley, 2002.
[7] T. Budd, “An introduction to object-oriented programming,” 3rd ed.

Addison-Wesley, 2002.
[8] C. Ruey Shun and C. Duen Kai. (2008). “Apply ontology and agent

technology to construct virtual observatory,” Expert Systems with
Applications, 34(3), pp. 2019–2028.

87 Polibits (47) 2013ISSN 1870-9044

Patrones de implementación para incluir comportamientos proactivos

[9] A. Adla. (2006). “A Cooperative Intelligent Decision Support System
for Contingency Management,” Journal of Computer Science, 2(10).

[10] L. Rey Vázquez. (2009). “Informe APEI sobre vigilancia tecnológica”,
Asociación Profesional de Especialistas en Información. [Online].
Available: http://eprints.rclis.org/17578.

[11] S. Sauvage, “Agent Oriented Design Patterns: A Case Study,” in Proc.
of the Third International Joint Conference on Autonomous Agents and
Multiagent Systems, Vol. 3, 2004, pp. 1496–1497.

[12] L. Sabatucci, M. Cossentino and S. Gaglio, “A Semantic Description
For Agent Design Patterns,” in Proceedings of the Sixth International
Workshop "From Agent Theory to Agent Implementation" (AT2AI-6) at
The Seventh International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2008), 2008, pp. May 13.

[13] R.S. Pressman, “Software engineering: a practitioner's approach”, 7th
ed. McGraw-Hill Higher Education, 2010.

[14] K. Beck, “Implementation patterns,” 1st ed. Addison-Wesley, 2008.
[15] M. Fowler, “UML distilled”, 3rd ed. Addison-Wesley, 2004.
[16] J. Rumbaugh, I. Jacobson and G. Booch, “The Unified Modeling

Language Reference Manual,” 2nd reprint ed. Addison-Wesley, 2010.
[17] N.R. Jennings, “An agent-based approach for building complex

software systems,” Comm. of the ACM, 44(4), 2001, pp. 35–41.
[18] FIPA, “FIPA Agent Management Specification,” Foundation for

Intelligent Physical Agents, 2003. [Online]. Available: http://www.
fipa.org/specs/fipa00023/XC00023H.html.

[19] F. Zambonelli and A. Omicini, “Challenges and Research Directions in
Agent-Oriented Software Engineering,” Autonomous Agents and
Multi-Agent Systems, 9(3), 2004, pp. 253–283.

[20] F. Dignum et al., “Open Agent Systems,” in Agent-Oriented Software
Engineering VIII, Springer Berlin Heidelberg, 2008, pp. 73–87.

[21] S. Franklin and A. Graesser, “Is it an Agent, or Just a Program?: A
Taxonomy for Autonomous Agents,” in Proceedings of the Workshop
on Intelligent Agents III, Agent Theories, Architectures, and
Languages, 1997, pp. 21–35.

[22] S. Russell and P. Norvig, “Artificial Intelligence: A Modern
Approach,” 3rd, illustrated ed. Prentice Hall, 2010.

[23] B. Henderson-Sellers, “From Object-Oriented to Agent-Oriented
Software Engineering Methodologies,” in Software Engineering for
Multi-Agent Systems III, Springer Berlin Heidelberg, 2005, pp. 1–18.

[24] S.A. O’Malley and S.A. DeLoach, “Determining When to Use an
Agent-Oriented Software Engineering Paradigm,” in Agent-Oriented
Software Engineering II, Springer, 2002, pp. 188–205.

[25] E. German and L. Sheremetov, “An Agent Framework for Processing
FIPA-ACL Messages Based on Interaction Models,” in Agent-Oriented
Software Engineering VII, Springer, 2008, pp. 88–102.

[26] FIPA, “FIPA Communicative Act Library Specification,” Foundation
for Intelligent Physical Agents, 2003. [Online]. Available: http://www.
fipa.org/specs/fipa00037/SC00037J.html.

[27] FIPA, FIPA ACL Message Structure Specification. Foundation for
Intelligent Physical Agents, 2003. [Online]. Available: http://www.
fipa.org/specs/fipa00061/SC00061G.html.

[28] F. Bellifemine et al., “Jade—A Java Agent Development Framework,”
in Multi-Agent Programming, Springer US, 2005, pp. 125–147.

[29] F.L. Bellifemine, G. Caire and D. Greenwood, “Developing Multi-
Agent Systems with JADE,” ed. Wiley, 2007.

[30] P. Evitts, “A UML pattern language,” ed. Macmillan Technical
Publishing, 2000.

[31] C. Alexander, S. Ishikawa and M. Silverstein, “A Pattern Language:
Towns, Buildings, Construction,” 21th ed. New York: Oxford
University Press, 1977.

[32] J. Gil and I. Maman, “Implementation Patterns. Department of
Computer Science Technion-Israel Institute of Technology”, 2004.
[Online]. Available: http://www.cs.technion.ac.il/~imaman/stuff/ip-
ecoop05.pdf.

[33] M. Cossentino, L. Sabatucci and A. Chella, “Patterns Reuse in the
PASSI Methodology,” in Engineering Societies in the Agents World
IV, Springer Berlin Heidelberg, 2004, pp. 294–310.

[34] Y. Aridor and D.B. Lange, “Agent design patterns: elements of agent
application design,” in Proceedings of the Second international
conference on Autonomous agents, 1998, pp. 108–115.

[35] S. Sauvage, “Design Patterns for Multiagent Systems Design,” in
MICAI 2004: Advances in Artificial Intelligence, Springer Berlin
Heidelberg, 2004, pp. 352–361.

[36] A. Oluyomi, S. Karunasekera and L. Sterling, “An Agent Design
Pattern Classification Scheme: Capturing the Notions of Agency in
Agent Design Patterns,” in Proceedings of the 1th Asia-Pacific
Software Engineering Conference, 2004, pp. 456–463.

[37] F. Bergenti, M.-P. Gleizes and F. Zambonelli, Methodologies and
Software Engineering for Agent Systems: The Agent-Oriented
Software Engineering Handbook, ed. Springer, 2004.

[38] A. Chella, M. Cossentino and L. Sabatucci. “Tools and patterns in
designing multi-agent systems with PASSI,” WSEAS Transactions on
Communications, 3(1), 2004, pp. 352-358.

[39] F. Bellifemine et al., “JADE-A Java Agent Development Framework,”
in Multi-Agent Programming Languages, Platforms and Applications,
Springer, 2005, pp. 125–147.

[40] I. de la Vega, “Tipología de Observatorios de Ciencia y Tecnología,”
Los casos de América Latina y Europa. Revista Española De
Documentación Científica, 2007, 30(4), pp. 545–552.

88Polibits (47) 2013 ISSN 1870-9044

Mailyn Moreno, Alternán Carrasco, Alejandro Rosete, and Martha D. Delgado

Resumen—En este trabajo se presenta un método basado en la
operación de las llamadas redes neuronales dinámicas (RND),
para la recomendación musical optimizada. Las redes son
entrenadas con las señales de cada melodía, y no con descriptores
tradicionales. La propuesta fue probada con una base de datos
compuesta por 1,000 melodías, a diferentes frecuencias de
muestreo.

Palabras clave—Recuperación de información musical, red
neuronal dinámica, descriptor musical.

Dynamic Neural Networks Applied to
Optimized Music Recommendation

Abstract—A method based on the operation of so called

dynamic neural networks (DNN) for music recommendation is
described. DNNs are trained with the signals of each melody and
not with traditional descriptors. The method has been tested with
a database composed of 1.200 melodies, at different sampling
frequencies.

Index Terms—Music information retrieval, dynamic neural
networks, musical descriptor.

I. INTRODUCCIÓN

A Recuperación de Información Musical (MIR por sus
siglas en inglés) ha sido definida por Stephen Downie

como la “investigación multidisciplinaria que se esfuerza por
desarrollar sistemas innovadores de búsqueda basados en el
contenido, interfaces novedosas, y mecanismos para que el
vasto mundo de la música esté al alcance de todos”. Dado al
gran interés en esta área de investigación, y a los costos
elevados de las bases de datos de música, la mayoría de los
investigadores se han visto en la necesidad de crear y utilizar

Manuscrito recibido el 28 de mayo de 2012; aceptado para la publicación
el 5 de junio del 2012.

Laura Elena Gómez Sánchez, Humberto Sossa Azuela, Ricardo Barrón y
Julio F. Jimenez Vielma pertenecen al Centro de Investigación en
Computación-IPN, Unidad Profesional Adolfo-López Mateos, Av. Juan de
Dios Batiz s/n y M. Othon de Mendizábal, Zacatenco, México, DF. 07738,
México (e-mail: lenis45@hotmail.com, hsossa@cic.ipn. mx,
rbarron@cic.ipn.mx, jfvielma@cio.mx).

Francisco Cuevas pertenece al Centro de Investigaciones en Óptica A.C.
Loma del Bosque #115, Col. Lomas del Campestre C.P. 37150, León, Gto.
México (e-mail: fjcuevas@cio.mx).

sus propias bases de datos que no se encuentran en la
literatura, esto debido a los derechos de autor.

El área de recuperación de información musical se organiza
de acuerdo a los casos según cada tipo de consulta, de acuerdo
a la forma de comparar la entrada con la salida. Las consultas
y la salida puede ser información textual (metadatos),
fragmentos de música, grabaciones, partituras o características
de la música. Ésta se divide en tres áreas principales de
estudio:

− Análisis simbólico. Se refiere a la recuperación de
información musical a través de partituras digitales [2],
[3], [4], [5] y [6].

− Metadatos. Tiene que ver con la recuperación de
información musical usando metadatos [7], [8], [9] y [10].

− Análisis de señales acústicas. Tiene que ver con la
recuperación de información musical mediante señales
sonoras musicales [11], [12], [13], [14], [15], [16] y [17].

El contorno melódico se utiliza para representar las
melodías, característica principal que se utiliza en [18] y [19],
la melodía se transforma en una secuencia U, D, R que
representan la nota superior, inferior o igual a la nota anterior,
respectivamente. Este enfoque simplifica demasiado la
melodía que no puede discriminar correctamente entre otras
melodías, sobre todo cuando se tiene una gran cantidad de
datos. En [20] no solo usa el contorno melódico, también
agrega el uso del intervalo del tono y el ritmo. Posteriormente
en [21] se introducen cuatro tipos básicos de segmento (A, B,
C, D) para el modelo del contorno musical. En ese mismo año
en [22] se utiliza un nuevo indicador entre la consulta y las
canciones que se proponen.

Varias técnicas de búsqueda basadas en metadatos se han
realizado con el modelo de espacio vectorial, el modelo
Booleano, indexación, invertir el archivo de índice, medida
del coseno, etc. [23], [24] y [25]. En el área de recuperación
de información, existen técnicas de indexación y
agrupamiento aplicadas al manejo de recuperación
musical [26].

CompariSong, en primer lugar, convierte el archivo de
audio en segmentos, 10 segmentos por segundo se extraen en
base a la frecuencia fundamental y la energía, la serie de
tiempo se convierte en letras, para encontrar la
correspondencia entre la consulta y la base de datos se utiliza
la distancia Levenshtein [27].

Redes neuronales dinámicas aplicadas a la
recomendación musical optimizada

Laura Elena Gómez Sánchez, Humberto Sossa Azuela, Ricardo Barrón,
Francisco Cuevas y Julio F. Jimenez Vielma

L

89 Polibits (47) 2013ISSN 1870-9044; pp. 89–95

 (a) (b)

Fig. 1. Conexión de dos neuronas con retardo temporal

La implementación de redes neuronales, tales como las
redes de Hopfield, Jordan y Elman, han sido ampliamente
utilizadas, al igual que las técnicas de minería de datos dado
que el manejo de metadatos es menor.

Existe un sistema híbrido de búsqueda por metadatos y
consulta por tarareo, en el cual se realiza un tipo de filtro a
través de una búsqueda racional de metadatos y la segunda
mediante el tarareo para realizar un control de archivos por
consulta.

Midomi es un sitio web comercial desarrollado por la
corporación Melodis en 2006 [29]. Midomi trabaja en
consultas mediante tarareo, canto y silbido, también
proporciona una búsqueda avanzada sobre el género y
lenguaje, tiene una base de datos musical de más de dos
millones de melodías.

SoundHound es otro proyecto de la misma corporación
especialmente diseñado para teléfonos móviles e iPods.
Funciona igual que Midomi, por medio de tarareo, canto y
silbido. Actualmente está diseñado para iPhone, iPod touch,
iPod y teléfonos móviles android [30].

Musipedia es un proyecto de código abierto haciendo
hincapié en la recuperación de melodías de manera muy
diversa [31]. Este sistema proporciona facilidad de búsqueda
de melodías en tres diferentes categorías, mediante
transcripción melódica, transcripción del contorno melódico y
la base rítmica. Soporta consultas por tarareo, silbido, canto,
contornos y por golpeteo.

En este artículo se describe un método para la
recomendación musical basada en el uso de redes neuronales
dinámicas (RND). El método trabaja con diferentes
frecuencias de muestreo en formato WAV. La base de datos
cuenta con dos conjuntos de melodías, uno para entrenamiento
y el otro para las consultas. Una vez que el conjunto de
melodías es usado para entrenar las RND, se utilizan los pesos
sinápticos de las redes como descriptores para la
recomendación musical.

El resto del trabajo se organiza como sigue. En la sección 2
se describe como las redes neuronales de retardo temporal
(TDNN por sus siglas en inglés) pueden ser usadas para la
recomendación musical. En la sección 3 se detalla el trabajo
realizado. En la sección 4 se muestran los experimentos y
resultados obtenidos, respectivamente. Finalmente, en la
sección 5 se dan las conclusiones de este trabajo.

I. RECUPERACIÓN DE INFORMACIÓN MUSICAL USANDO TDNN

A. Redes neuronales de retardo temporal (TDNN)
La arquitectura TDNN fue desarrollada en [32]. Esta

arquitectura se diseñó originalmente para el procesamiento de
patrones de secuencias de voz en series de tiempo con
desplazamientos.

Cuando se usan redes multicapa para el tratamiento de
secuencias, se suele aplicar una idea muy simple: la entrada de
la red se compone no sólo del valor de la secuencia en un
determinado instante, sino por valores en instantes anteriores.
Es como alimentar la red con una ventana temporal.

La idea de introducir el estado de una variable en diversos
instantes en la red no sólo se puede aplicar a la entrada, sino
también a las activaciones de las neuronas. Una red donde las
activaciones de algunas neuronas son simplemente una copia
de las activaciones de otra en instantes anteriores de la
denominada Red Neuronal con Retardo Temporal o Time-
Delay Neural Network (TDNN) [33] y [34].

Las neuronas con las que se trabaja en redes multicapa con
retardo temporal responden a la ecuación:

 ,i i ij j
j

x f w x
 

=  
 
∑ . (1)

Como se observa, no existe una dependencia temporal, y la
propagación o cálculo de las activaciones se realiza desde la
capa superior a la inferior como en cualquier red multicapa.

90Polibits (47) 2013 ISSN 1870-9044

Laura Elena Gómez Sánchez, Humberto Sossa Azuela, Ricardo Barrón, Francisco Cuevas, and Julio F. Jimenez Vielma

En estas redes un paso de tiempo hay que entenderlo como
iteración. La conexión entre la neurona j y la neurona i, con
retardos temporales, se realizará como:

 ,i i il l
l

x f w x =  
 
∑ , (2)

 ()l j lx x t t= − , (3)

donde t significa iteración y tl es el retardo temporal. Las
neuronas xl son simplemente copias de la activación de xj en
instantes o iteraciones anteriores. Se puede dar otra
interpretación que consiste en asignar a los pesos distintas
velocidades de conexión, siendo unos más lentos que otros,
con lo cual en vez de tener una capa con varias neuronas
conteniendo copias de las activaciones de la j tendríamos sólo
la neurona j pero conectada a la i con varios pesos de distinta
velocidad. La ecuación anterior se transformaría en:

 (,)i i ijk j
j k

x f w x= ∑ ∑ . (4)

donde wijk correspondería al peso que conecta la neurona j con
la i con retardo o velocidad k. En la figura 1 se visualiza la
conexión entre dos neuronas para las dos interpretaciones.
Esta última interpretación tiene un a gran importancia ya que
es bien sabido que existen retrasos temporales significativos
en los axones y sinapsis de las redes de neuronas biológicas.

B. Algoritmo Levenberg-Marquardt
Este algoritmo fue diseñado para encontrar las raíces de

funciones formadas por la suma de los cuadrados de funciones
no lineales, siendo el aprendizaje de redes neuronales, una
aplicación especial de este algoritmo. El algoritmo de
Levenberg Marquardt es una variación del método de iterativo
de Newton para encontrar las raíces de una función.

El algoritmo de Levenberg Marquardt puede aplicarse en
cualquier problema donde se necesite encontrar los valores de
las raíces de una función; en el caso de las redes neuronales
artificiales, la función es el error cuadrático medio de las
salidas de la red y las raíces de esta función son los valores
correctos de los pesos sinápticos.

En la ecuación (5), se presenta como se localiza un valor
mínimo (xmin) de una función de una variable f(x), utilizando la
primera y segunda derivada de acuerdo al método de Newton:

 min
min min

min

'(())(1) ()
(())

f x tx t x t
f x t

+ = −
′′

. (5)

Con base en esta ecuación se puede inferir la ecuación (6),
donde se minimice el error global Ep en el espacio de los
pesos sinápticos representado por la matriz W:

 (1) () p

p

E
W t W t

E

′
+ = −

′′
. (6)

La segunda derivada del error global (Ep") corresponde a la
matriz Hessiana H y la primera derivada (Ep') la conocemos
como el vector gradiente G. El vector gradiente y la matriz
Hessiana de la función de error los podemos calcular
utilizando la regla de la cadena. Así, el vector gradiente se
compone por las derivadas parciales del error con respecto a
cada uno de los pesos wi de la red, el elemento (i,j) de la
matriz Hessiana se calcula con las segundas derivadas
parciales del error con respecto a los pesos wi y wj.

Debido a la carga computacional que implica calcular de
manera exacta la matriz H, se hace una estimación de la
misma [35]. Debido a esto, en (6) se introduce un mecanismo
de control para evitar los problemas que se puedan tener en la
actualización de pesos de la red, dando origen a (7):

 1(1) () ()W t W t H I Gλ −+ = − + . (7)

El mecanismo de control para garantizar la convergencia
del algoritmo consiste en introducir un factor λI. En primer
lugar se prueba la ecuación del método de Newton. Si al
evaluarla, el algoritmo no converge (el valor del error
comienza a crecer), se elimina este valor y se incrementa el
valor de λ en (7), con el fin de minimizar el efecto de la matriz
H en la actualización de pesos. Si λ es muy grande, el efecto
de la matriz H prácticamente desaparece y la actualización de
pesos se hace esencialmente con el algoritmo de gradiente
descendente. Si el algoritmo tiene una clara tendencia hacia la
convergencia se disminuye el valor de λ con el fin de
aumentar el efecto de la matriz H. De esta manera se garantiza
que el algoritmo se comporta con un predominio del Método
de Newton.

El método Levenberg Marquardt mezcla sutilmente el
método de Newton y el método Gradiente Descendente en una
única ecuación para estimar la actualización de los pesos de la
red neuronal.

C. Audio digital
El audio digital es la representación de señales sonoras

mediante un conjunto de datos binarios. Un sistema completo
de audio digital comienza habitualmente con un transceptor
(micrófono) que convierte la onda de presión que representa el
sonido a una señal eléctrica analógica.

Esta señal analógica atraviesa un sistema de procesado
analógico de señal, en el que se puede realizar limitaciones en
frecuencia, ecualización, amplificación y otros procesos como
el de compansión. La ecualización tiene como objetivo
contrarrestar la particular respuesta en frecuencia del
transceptor utilizado de forma que la señal analógica se
asemeje mucho más a la señal audio originario.

Tras el procesado analógico la señal se muestrea, se
cuantifica y se codifica. El muestreo toma un número discreto
de valores de la señal analógica por segundo (tasa de
muestreo) y la cuantificación asigna valores analógicos
discretos a esas muestras, lo que supone una pérdida de

91 Polibits (47) 2013ISSN 1870-9044

Redes neuronales dinámicas aplicadas a la recomendación musical optimizada

información (la señal ya no es la misma que la original). La
codificación asigna una secuencia de bits a cada valor
analógico discreto. La longitud de la secuencia de bits es
función del número de niveles analógicos empleados en la
cuantificación. La tasa de muestreo y el número de bits por
muestra son dos de los parámetros fundamentales a elegir
cuando se quiere procesar digitalmente una determinada señal
de audio.

Los formatos de audio digital tratan de representar ese
conjunto de muestras digitales (o una modificación) de las
mismas de forma eficiente, tal que se optimice en función de
la aplicación, o bien el volumen de los datos a almacenar o
bien la capacidad de procesamiento necesaria para obtener las
muestras de partida.

En este sentido hay un formato de audio muy extendido que
no se considera de audio digital: el formato MIDI. MIDI no
parte de muestras digitales del sonido, sino que almacena la
descripción musical del sonido, siendo una representación de
la partitura de los mismos.

El sistema de audio digital suele terminar con el proceso
inverso al descrito. De la representación digital almacenada se
obtienen el conjunto de muestras que representan. Estas
muestras pasan por un proceso de conversión digital analógica
proporcionando una señal analógica que tras un procesado
(filtrado, amplificación, ecualización, etc.) inciden sobre el
transceptor de salida (altavoz) que convierte la señal eléctrica
a una onda de presión que representa el sonido.

Los parámetros básicos para describir la secuencia de
muestras que representa el sonido son:

− El número de canales: 1 para mono, 2 para estéreo, 4
para el sonido cuadrafónico, etc.

− Frecuencia de muestreo: El número de muestras tomadas
por Segundo en cada canal.

− Número de bits por muestra: Habitualmente 8 ó 16 bits.

Como regla general, las muestras de audio multicanal
suelen organizarse en tramas. Una trama es una secuencia de
tantas muestras como canales, correspondiendo cada una a un
canal. En este sentido el número de muestras por segundo
coincide con el número de tramas por segundo. En estéreo, el
canal izquierdo suele ser el primero.

La calidad del audio digital depende fuertemente de los
parámetros con los que esa señal de sonido ha sido adquirida,
pero no son los únicos parámetros importantes para
determinar la calidad. Una forma de estimar la calidad del
sonido digital es analizar la señal diferencia entre el sonido
original y el sonido reproducido a partir de su representación
digital.

De acuerdo a lo anterior se puede hablar de una relación
señal a ruido. Para los sistemas de audio que realicen
compresiones digitales tipo lossless, esta medida va a estar
determinada por el número de bits por muestra y la tasa de
muestreo.

El número de bits por muestra determina un número de
niveles de cuantificación y éstos una relación señal a ruido de
pico de portadora que depende de forma cuadrática del
número de bits por muestra para el caso de la cuantificación
uniforme. La tasa de muestreo establece una cota superior
para las componentes espectrales que pueden representarse,
pudiendo aparecer distorsión lineal en la señal de salida y
aliasing (o solapamiento de espectros) si el filtrado de la señal
no es el adecuado. Para los sistemas digitales con otro tipo de
compresión la relación señal a ruido puede indicar valores
muy pequeños aunque las señales sean idénticas para el oído
humano.

La frecuencia de muestreo es un número que indica la
cantidad de muestras que se toman en determinado intervalo
de tiempo, la resolución o profundidad del sonido es un
número que indica cuántos bits (dígitos binarios, ceros y unos)
se utilizan para representar cada muestra. Tanto la frecuencia
como la resolución están directamente relacionadas con la
calidad del sonido digital almacenado. Mientras mayores sean
estos indicadores, más parecida será la calidad del sonido
digitalizado con respecto al real. El estándar definido cuando
se crearon los discos compactos de audio especifica que el
sonido digita almacenado en ellos debe poseer una frecuencia
de 44 100 KHz y 16 bits estéreo. Esto significa que se deben
tomar unas 44 100 muestras por segundo, cada una se
representará con 16 bits, y en dos canales independientes
(sonido estéreo).

II. TRABAJO REALIZADO EN MIR

De acuerdo a la literatura el análisis espectral de la señal en
el dominio de la frecuencia ha brindado mejores resultados
que las técnicas enfocadas al análisis de la misma en el
dominio del tiempo. Algunas de las características como el
tono, duración, ritmo, correlación cruzada, FFT entre otros
están ampliamente ligados a la firma digital. Sin embargo,
utilizar directamente la información contenida en la melodía
sin hacer uso de firmas digitales o de funciones tradicionales,
se evita el pre procesamiento de la información que estas
requieren. En este trabajo se utiliza la melodía original para
realizar la recuperación de información musical. No se ha
realizado ningún cambio o tratamiento previo a las melodías
para tratar de adaptarlas a un modelo tradicional, se
introducen directamente a la TDNN, dicho procesamiento se
muestra en la figura 2.

Tenemos una base de datos de melodías de los Beatles en
formato WAV, se cuenta con un conjunto de entrenamiento y
otro de prueba. Cada melodía es entrenada en una red
neuronal de retardo temporal (TDNN_(i), donde i es la
melodía, al terminar el entrenamiento se obtiene una matriz de
pesos WNN_(i).

De cada melodía que se almacena en la base de datos, se
obtiene un vector de datos que puede ser de longitud variable.
El número de retardos es igual al número de neuronas en la

92Polibits (47) 2013 ISSN 1870-9044

Laura Elena Gómez Sánchez, Humberto Sossa Azuela, Ricardo Barrón, Francisco Cuevas, and Julio F. Jimenez Vielma

Fig. 2. Estructura de una Red Neuronal con Retardo Temporal

capa de entrada para el primer bloque de datos, en otras
palabras se hace un ventaneo del vector. Cada una de las
ventanas es la siguiente entrada de la red. Dicho proceso se
aplica en toda la melodía.

La matriz obtenida es nuestro descriptor musical,
descartando por completo cualquier descriptor tradicional.
Esto se puede observar en la figura 3.

Para la recuperación de una melodía se introduce un
segmento consulta, dicho segmento entra a una red neuronal
de retardo temporal con los pesos sinápticos previamente
entrenados, obteniendo los errores de recuperación por cada
red (Re_(i)).

Este error se genera a partir de la comparación del
segmento consulta en relación con la señal estimada o la
predicción de la señal obtenida desde la red. Estos errores son
almacenados en un vector, finalmente se aplica arg min()
retornando un índice (n*), indicando que red neuronal tuvo el
menor error. Este procedimiento se ilustra en la figura 4.

El error de recuperación está dado por:

()2

1Re_

N

j j
j

x y
i

w
=

−
=

∑
.

(8)

donde xi son las matrices de pesos previamente entrenados, yi
es el segmento a reconocer, y w es el número de ventanas en
las que el segmento fue dividido.

III. EXPERIMENTOS Y RESULTADOS
La topología de la TDNN seleccionada consistió de tres

capas: una de entrada (número de neuronas es igual al número
de retardos de la red), una oculta y una capa de salida (que
corresponde a la predicción, ya que es una neurona). Este
modelo de red fue programado en Matlab y los datos de
entrada no han sido normalizados.

El algoritmo utilizado para el entrenamiento es el
backpropagation. Este procedimiento ajusta iterativamente
todos los pesos de la red con el fin de disminuir el error

obtenido en la unidad de salida, utilizando el algoritmo
Levengerg-Marquardt como función de activación.

Los pesos de conexión están inicializados aleatoriamente a
[0:3]. Por razones de la velocidad de convergencia de todas
las muestras entrenadas que se presentan una vez que los
pesos se actualizan.

Se usan archivos en formato WAV de 16 bits (en modo
estéreo, para entrenamiento o recuperación solo se utiliza un
canal para evitar el over-processing, recordando que la
información de un canal es copia fiel del otro. La base de
datos para esta experimentación es de 1000 melodías (Beatles
y Elvis Presley).

La configuración usada para el entrenamiento de las
melodías fue de 5 y 10 neuronas en la capa oculta (debido a
que en pruebas anteriores son las que mejores resultados han
dado) y las iteraciones fueron de 15, 25 y 35, con un retardo
de 10, recordando que el tamaño del retardo es igual al
número de neuronas en la capa de entrada, obteniendo una
predicción de datos en la salida. Al terminar el entrenamiento
de cada melodía se obtiene su matriz de pesos, las cuales se
utilizarán como descriptores.

Se realizaron pruebas con diferentes tipos de frecuencia de
muestreo en formato WAV, utilizando la base de datos
mencionada anteriormente. Para estos experimentos se cuenta
con un conjunto de entrenamiento y un conjunto diferente para
las consultas, cabe destacar que algunas melodías cuentan con
2 o 3 versiones diferentes, lo que permite analizar el
desempeño de nuestra propuesta. La tabla I resume las
características principales de los datos utilizados.

Como se puede observar la ventana de consulta tiene
diferentes valores, ya que a menor frecuencia se cuenta con
menos información para realizar un reconocimiento con un
segmento pequeño de consulta. Las tablas II y III muestran el
rendimiento obtenido en cada configuración utilizada. La tabla
II muestra el tamaño necesario de la ventana consulta para una
recuperación perfecta. La tabla III muestra el tamaño mínimo
para obtener una recomendación de 10 melodías para el
usuario. El porcentaje de recuperación por recomendación de
melodías puede observarse en la Tabla IV.

IV. CONCLUSIONES

En este trabajo se describió como las llamadas redes
neuronales con retrasos pueden ser usadas para describir el
contenido musical de melodías para su posterior recuperación,
basándose en partes de dichas melodías. Mediante las TDNN
se logró resolver el problema planteado sin necesidad de
realizar un pre-procesamiento, evitando así el utilizar algún
descriptor tradicional o firma digital de la melodía.

A diferencia de otras técnicas de MIR, la melodía original
se puede considerar como una serie temporal que se introduce
directamente en la TDNN, la salida de la red codifica una
descripción de la melodía en la matriz de pesos. Por ejemplo,
si se entrena una TDNN con una melodía de 7 938 000 de

93 Polibits (47) 2013ISSN 1870-9044

Redes neuronales dinámicas aplicadas a la recomendación musical optimizada

Fig. 3. Estructura de entrenamiento de las melodías con TDNN

Fig. 4. Procedimiento de recuperación de una melodía usando el modelo propuesto

TABLA I
RASGOS CONSIDERADOS PARA EL AUDIO DIGITAL (WAV)

Tasa de muestreo
(KHz)

Rango de la ventana de consulta
(Datos)

22 050 25 000 – 60 000
24 000 20 000 – 54 000
32 000 15 000 – 45 000
44 100 10 000 – 40 000

TABLA II
TABLA DE RECUPERACIÓN PERFECTA

Tasa de muestreo (KHz): 22 050 24 000 32 000 44 100

Neuronas
en la capa

oculta
Iteraciones Rango de la ventana de consulta

(Datos)

5 15 58 000 54 000 32 000 32 000
 25 41 000 40 000 35 000 29 000
 35 48 000 43 000 38 000 18 000

10 15 59 000 41 000 35 000 40 000
 25 43 000 57 000 39 000 31 000
 35 57 000 46 000 45 000 25 000

TABLA III
TABLA DE RECOMENDACIÓN DE 10 MELODÍAS

Tasa de muestreo
(KHz): 22 050 24 000 32 000 44 100

Neuronas
en la capa

oculta
Iteraciones Rango de la ventana de consulta

(Datos)

5
15 42 000 38 000 27 000 25 000
25 31 000 29 000 24 000 21 000
35 35 000 31 000 31 000 15 000

10
15 44 000 36 000 25 000 32 000
25 36 000 52 000 28 000 24 000
35 51 000 42 000 37 000 19 000

TABLA IV
TABLA DE PROCENTAJES DE RECUPERACIÓN POR RECOMENDACIÓN

Tasa de muestreo
 (KHz): 22 050 24 000 32 000 44 100

Neuronas
en la capa

oculta
Iteraciones Porcentajes %

5 15 72 74 92 89
 25 79 79 85 92
 35 75 75 83 94

10 15 80 80 84 82
 25 77 77 87 86
 35 74 74 81 87

cuadros (aproximadamente 3 minutos de una melodía) con
calidad de audio a 44 100 KHz para una recuperación
perfecta, solo se necesitan máximo 40 000 cuadros, lo cual
refleja menos del 1% del total de la melodía.

Con los resultados obtenidos en esta experimentación se ha
observado que el sistema funciona muy bien incluso al
trabajar con diferentes frecuencias de muestreo, los mejores
porcentajes se obtuvieron con frecuencias de 32 000 y 44 100
KHz, debido a que se tiene una mejor calidad de audio, sin
embargo las frecuencias restantes logran realizar una buena
recomendación musical. En experimentaciones previas se
usaba el conjunto de entrenamiento tanto para el
entrenamiento como para la consulta.

En el presente trabajo se analizó el desempeño del método
propuesto al usar versiones diferentes de las melodías
aprendidas para la recuperación.

REFERENCIAS
[1] F. Wiering, “Can humans benefit from music information retrieval?,”

AMR’06, Proc. of the 4th international conference on Adaptive
Multimedia Retrieval: User, Context and Feedback, Springer, 2007, p.
82–94.

94Polibits (47) 2013 ISSN 1870-9044

Laura Elena Gómez Sánchez, Humberto Sossa Azuela, Ricardo Barrón, Francisco Cuevas, and Julio F. Jimenez Vielma

[2] K. Lemstrom, G.A. Wiggins and D. Meredith, “A three-layer approach
for music retrieval in large databases,” 2nd International Symposium on
Music Information Retrieval, Bloomington, USA, 2001, p. 13–14.

[3] H. Hoashi and K. Matsumoto, “Personalization of user profiles for
content-based music retrieval based on relevance feedback,”
Proceeding of the eleventh ACM international conference on
Multimedia, New York, USA, 2003, p. 110–119.

[4] H. Zhuge, “An inexact model matching approach and its applications,”
Journal of Systems and Software, 67 (3), 2003, p. 201–212.

[5] E. Hwang and S. Rho, “FMF (fast melody finder): A web-based music
retrieval system”, Lecture Notes in Computer Science vol. 277.
Springer, 2004, p. 179–192.

[6] E. Hwang and S. Rho, FMF: “Query adaptive melody retrieval system,”
Journal of Systems and Software, 79 (1), 2006, p. 43–56.

[7] N. Ali, M. Mshtaq, “Hybrid query by humming and metadata search
system (HQMS) analysis over diverse features,” International Journal
of Advanced Computer Science and Applications, Vol. 2, No. 9, 2011,
p. 58.

[8] P. W. Bertin-Mahieux, B. Whitman, P. Lamere, “The Million Song
Dataset,” 12th Conference of International Society for Music
Information Retrieval (ISMIR 2011), 2011.

[9] C. McKay, D. Bainbridge, D., “A Musical Web Mining and Audio
Feature Extraction Extension to the Greenstone Digital Library
Software,” 12th Conference of International Society for Music
Information Retrieval (ISMIR 2011), 2011.

[10] M. Weigl And C. Guastavino, “User Studies in the Music Information
Retrieval Literature,” 12th Conference of International Society for
Music Information Retrieval (ISMIR 2011), 2011.

[11] M. Ryynanen, A. Klapuri, “Transcription of the singing melody in
polyphonic music”, ISMIR 2006.

[12] F. Ren, D. B. Bracewell, “Advanced information retrieval,” Journal
Electronic Notes in Theoretical Computer Science (ENTCS) 225, 2009,
p. 303–317.

[13] K. Dressler, “Audio melody extraction”, late breaking at ISMIR 2010,
Proceedings International Society for Music Information Retrieval
Conference (ISMIR 2010), Utrecht, Netherlands, 2010.

[14] P. V. Kranenburg, J. Garbers, A. Volk, F. Wiering, L. P. Grijp, R. C.
Veltkamp, “Collaboration perspectives for folk song research and music
information retrieval: The indispensable role of computational
musicology,” Journal of Interdisciplinary Music Studies, 4 (1), 2010,
p. 17–43.

[15] J. Salamon, E. Gómez, “Melody extraction from polyphonic music
audio,” Music Information Retrieval Evaluation eXchange (MIREX),
Utrecht, The Netherlands, 2010.

[16] J. Salamon, E. Gómez, “Melody Extraction from Polyphonic Music:
MIREX 2011”, in Music Information Retrieval Evaluation eXchange
(MIREX) 2011, extended abstract, Miami, USA, 2011.

[17] J. Salamon, E. Gómez, “Melody Extraction from Polyphonic Music
Signals using Pitch Contour Characteristics,” IEEE Transactions on
Audio, Speech and Language Processing, 20(6), 2012, p. 1759–1770.

[18] A. Ghias, “Query By Humming-Musical Information Retrieval in an
Audio Database,” Proc. of ACM Multimedia 95, 1995, p 231–236.

[19] S. Blackburn, D. De Roure, “A Tool for Content Based Navigation of
Music,” Proc. ACM Multimedia 98, 1998, p. 361–368.

[20] R. J. McNab, “Towards the Digital Music Library: Tune Retrieval from
Acoustic Input,” Proc. of Digital Libraries, 1996, p. 11–18.

[21] A. L. P. Chen, M. Chang, J. Chen, “Query by Music Segments: An
Efficient Approach for Song Retrieval,” Proc. of IEEE International
Conference on Multimedia and Expo, 2000.

[22] C. Francu and C.G. Nevill-Manning, “Distance metrics and indexing
strategies for a digital library of popular music.” 2000 IEEE
International Conference on Multimedia and Expo, 2000, ICME 2000,
Vol. 2, IEEE, 2000, p. 889–892.

[23] N.C. Maddage, H. Li, and M.S. Kankanhalli, “Music structure based
vector space retrieval,” Proceedings of the 29th annual international
ACM SIGIR conference on Research and development in information
retrieval, ACM, 2006, p. 67–74.

[24] N. Kosugi, Y. Nishihara, S. Kon’ya, M. Yamamuro, and K. Kushima,
“Music retrieval by humming-using similarity retrieval over high
dimensional feature vector space,” 1999 IEEE Pacific Rim Conference
on Communications, Computers and Signal Processing, IEEE, 1999,
p. 404–407.

[25] L. Chen and B.G. Hu, “An implementation of web based query by
humming system. 2007 IEEE International Conference on Multimedia
and Expo, IEEE, 2007, p. 1467–1470.

[26] L. Lu, H. You, and H.J. Zhang, “A new approach to query by humming
in music retrieval,” Proceedings of the IEEE International Conference
on Multimedia and Expo, 2001.

[27] G. Dzhambazov, “Comparisong: Audio comparison engine,”
International Book Series Number 11, 2009, p 33.

[28] M. A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and
M. Slaney, “Content-based music information retrieval: current
directions and future challenges,” Proceedings of the IEEE, 96(4),
2008, p. 668–696.

[29] Midomi, http://www.midomi.com.
[30] Soundhound. http://www.soundhound.com.
[31] Musipedia. musipedia. URL: http://www.musipedia.org/.
[32] A. Weibel, T. Hanazawa, G. Hinton, K. Shikano and K. Lang,

“Phenomena Recognition Using Time-delay Neural Networks,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, 37(3),
1989, 328–339.

[33] J. B. Hampshire & A. H. Waibel, “A Novel Objetive Function for
Improved Phoneme Recognition Using Time-Delay Neural Networks,”
IEEE Transactions on Neural Networks, 1, 1990, p. 216–228.

[34] K. Lang and G. Hinton, “A Time-Delay Neural Network Arquitecture
for Speech Recognition,” Carnegie Mellon University, Tech. Reprt.
CMU-CS-88-152, 1988.

[35] T. Masters, “Advanced Algorithms for Neural Network: A C++
Sourcebook,” John Wiley & Sons Inc, 1995.

95 Polibits (47) 2013ISSN 1870-9044

Redes neuronales dinámicas aplicadas a la recomendación musical optimizada

I. JOURNAL INFORMATION

Polibits is a half-yearly open-access research journal
published since 1989 by the Centro de Innovación y
Desarrollo Tecnológico en Cómputo (CIDETEC: Center of
Innovation and Technological Development in Computing) of
the Instituto Politécnico Nacional (IPN: National Polytechnic
Institute), Mexico City, Mexico.

The journal has double-blind review procedure. It publishes
papers in English and Spanish (with abstract in English).
Publication has no cost for the authors.

A. Main Topics of Interest
The journal publishes research papers in all areas of

computer science and computer engineering, with emphasis on
applied research. The main topics of interest include, but are
not limited to, the following:

− Artificial Intelligence
− Natural Language

Processing
− Fuzzy Logic
− Computer Vision
− Multiagent Systems
− Bioinformatics
− Neural Networks
− Evolutionary Algorithms
− Knowledge

Representation
− Expert Systems
− Intelligent Interfaces
− Multimedia and Virtual

Reality
− Machine Learning
− Pattern Recognition
− Intelligent Tutoring

Systems
− Semantic Web
− Robotics
− Geo-processing
− Database Systems

− Data Mining
− Software Engineering
− Web Design
− Compilers
− Formal Languages
− Operating Systems
− Distributed Systems
− Parallelism
− Real Time Systems
− Algorithm Theory
− Scientific Computing
− High-Performance

Computing
− Networks and

Connectivity
− Cryptography
− Informatics Security
− Digital Systems Design
− Digital Signal Processing
− Control Systems
− Virtual Instrumentation
− Computer Architectures

B. Indexing
The journal is listed in the list of excellence of the

CONACYT (Mexican Ministry of Science) and indexed in the
following international indices: LatIndex, SciELO, Periódica,
and e-revistas.

There are currently only two Mexican computer science
journals recognized by the CONACYT in its list of
excellence, Polibits being one of them.

II. INSTRUCTIONS FOR AUTHORS
A. Submission

Papers ready for peer review are received through the Web
submission system on www.easychair.org/conferences/?conf=
polibits1; see also updated information on the web page of the
journal, www.cidetec.ipn.mx/polibits.

The papers can be written in English or Spanish. In case of
Spanish, author names, abstract, and keywords must be
provided in both Spanish and English; in recent issues of the
journal you can find examples of how they are fomatted.

Only full papers are reviewed; abstracts are not considered
as submissions. The review procedure is double-blind.
Therefore, papers should be submitted without names and
affiliations of the authors and without any other data that
reveal the authors’ identity.

For review, a PDF file is to be submitted. In case of
acceptance, the authors will need to upload the source code of
the paper, either Microsoft Word or TeX with all
supplementary files necessary for compilation. Upon
acceptance notification the authors receive further instructions
on uploading the camera-ready source files.

Papers can be submitted at any moment; if accepted, the
paper will be scheduled for inclusion in one of forthcoming
issues, according to availability and the size of backlog. While
we make every reasonable effort for fast review and
publication, we cannot guarantee any specific time for this.

B. Format
The papers should be submitted in the format of the IEEE

Transactions 8x11 2-column format, see http://www.ieee.org/
publications standards/publications/authors/author_templates.
html. (while the journal uses this format for submissions, it is
in no way affiliated with, or endorsed by, IEEE). The actual
publication format differs from the one mentioned above; the
papers will be adjusted by the editorial team.

There is no specific page limit: we welcome both short and
long papers, provided that the quality and novelty of the paper
adequately justifies its length. Usually the papers are between
10 and 20 pages; much shorter papers often do not offer
sufficient detail to justify publication.

The editors keep the right to copyedit or modify the format
and style of the final version of the paper if necessary.

Journal Information and Instructions for Authors

97 Polibits (47) 2013ISSN 1870-9044

